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problem under normalization constraint by using a preconditioned nonlinear conjugate gradient method. 
We present some numerical simulations and scalability results for the 2D and 3D problems to obtain 
the stationary states of BEC with fast rotation and large nonlinearities. The code takes advantage of ex-
isting HPC libraries and can itself be leveraged to implement other numerical methods like e.g. for the 
dynamics of BECs.
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1. Introduction

Bose-Einstein Condensates (BECs) have been first predicted the-
oretically by S.N. Bose and A. Einstein, before their experimental 
realization in 1995 [1–4]. This state of matter has the interesting 
feature that macroscopic quantum physics properties can emerge 
and be observed in a laboratory experiment. The literature on BECs 
grown very fast over the last two decades in atomic, molecular, 
optics and condensed matter physics. Important applications re-
lated to this new physics are now appearing, like e.g. in quantum 
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computing [5]. Concerning the most important directions, a spe-
cial attention has been directed towards the understanding of the 
nucleation of vortices [6–12], properties of dipolar gases [13,14] or 
also multi-components BECs [13,15,16]. For temperatures T which 
are much smaller than the critical temperature Tc , the macroscopic 
behavior of a BEC can be correctly described by a condensate wave 
function ψ as the solution to a Gross-Pitaevskii Equation (GPE). 
Therefore, being able to numerically calculate efficiently the solu-
tion of such a class of equations is extremely useful. Concerning 
the main questions related to BECs, we can cite the calculation of 
the stationary states (ground/excited states) as well as the real-
time dynamics [13,17–20].

In the present paper, we consider the problem of the com-
putation of stationary states (most particularly ground states) of 
the rotating GPE. A few methods are available in the literature 
to numerically obtain them. For example, some algorithms are 
based on appropriate discretizations of the continuous normal-
ized gradient flow/imaginary-time formulation [13,18,21–27], lead-
ing to various iterative algorithms. The methods are general and 
can be directly extended to many physical situations (e.g. dipolar 
interactions, multi-components GPEs...) [13,18,22,23,28]. Other ap-
proaches rather solve numerically the nonlinear eigenvalue prob-
lem [29,30] or the minimization of the energy functional by us-
ing optimization techniques under constraints [31–35]. Regularized 
Newton-type methods can also be used [36]. In the present pa-
per, we consider the constrained nonlinear Preconditioned Conju-
gate Gradient (PCG) method with a pseudo-spectral discretization 
scheme for the rotating GPE. This approach, developed in [37] and 
presented shortly in Section 2, provides an efficient and robust way 
to solve the minimization problem. Even if only the rotating GPE 
is considered here, the method can be extended to other situations 
(see [38] for dipole-dipole interactions or [39,40] for nonlinear 
fractional GPEs). The main goal of the paper is to introduce the 
solver BEC2HPC, to explain how to use its functionalities and to 
provide a few examples. Some future developments will include 
general systems of GPEs, as well as additional numerical methods 
for the dynamics of the GPE. Finally, let us remark that the GPE 
can be simplified to the nonlinear Schrödinger equation. Therefore, 
the BEC2HPC solver can also be useful to simulate other physical 
situations than BEC, where the Schrödinger equation has to be nu-
merically solved efficiently and accurately.

Concerning the available solvers for the GPE (and nonlinear 
Schrödinger equation), several contributions exist in the litera-
ture. Adhikari, Muruganandam and their co-authors developed in 
a series of papers some finite-difference codes for computing the 
stationary states and dynamics of GPEs without rotation. Var-
ious implementations are available, including codes written in 
Fortran [41,42], C [41,43], with OpenMP/MPI/CUDA/GNU versions 
[44–46]. In addition, the contribution [47] proposes a code that 
can solve the GPE with rotation term. In [48], a Matlab toolbox 
called OCTBEC is designed for the optimal control of BECs. The 
GPU-accelerated Matlab/C toolbox NLSEmagic is developed in [49]
for solving the multi-dimensional nonlinear Schrödinger equation 
through finite-difference in space and with a fourth-order Runge-
Kutta scheme in time. In [50], a finite element C++ toolbox is 
proposed for computing the stationary states (based on a New-
ton method) and dynamics of nonlinear Schrödinger equations. 
Another finite element toolbox has been recently developed with 
Freefem++ for solving various problems related to the 2D and 3D 
rotating GPE [51]. Finally, GPELab [28,52] is a Matlab toolbox that 
can solve a large class of problems related to the GPE, including 
stationary states, dynamics, and the possibility to handle some ad-
ditional stochastic terms. The wide variety of problems which can 
be solved by GPELab leads to the possibility of simulating many 
complex physical configurations related to BECs, which makes the 
toolbox very attractive. For the stationary states, the solver used 
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in GPELab may sometimes converge slowly for large nonlineari-
ties and high rotation speeds, since i) it is based on the normal-
ized gradient flow/imaginary time, and ii) the implementation in 
Matlab does not permit to use optimally the HPC ressources. In 
BEC2HPC, we use the PCG algorithm which is known to outperfom 
the normalized gradient flow formulation as shown in [37]. In ad-
dition, BEC2HPC proposes a HPC implementation of the algorithm, 
for the 2D and 3D GPE with rotation term. The resulting solver 
is then very robust, efficient and highly accurate since it uses a 
pseudo-spectral approximation in space.

The plan of the paper is the following. In Section 2, we intro-
duce the PCG algorithm that is used in BEC2HPC for computing the 
stationary states. Section 3 gives some information about the way 
BEC2HPC is developed, most particularly regarding the FFT imple-
mentation and some parallelization aspects. In Section 4, we pro-
pose a relatively simple example to start with the use of BEC2HPC, 
after its installation. Section 5 is devoted to the most advanced fea-
tures of BEC2HPC, including the data definition and the parameter 
selection, the use of the visualization tool (ParaView). In Section 6, 
we provide more examples and report some performances of the 
solver in 2D and 3D. Finally, we conclude in Section 7.

2. The PCG method for computing stationary states of the GPE

2.1. Notations and formulation

Let us consider the problem of computing a ground state of a 
d-dimensional (d = 2, 3) BEC which can be written under the form 
of the constrained minimization problem{

Find φ ∈ L2(Rd) such that
φ ∈ arg min||φ||2=1 Etot(φ),

(2.1)

where the L2(Rd)-norm of φ is defined as

||φ||22 =
∫
Rd

|φ|2dx :=< φ,φ >

and the hermitian inner-product is

∀(u, v) ∈ L2(Rd) × L2(Rd), < u, v >:=
∫
Rd

uv∗dx,

defining v∗ as the complex conjugate of v . For the minimization 
problem (2.1), we introduce the total energy functional Etot for the 
dimensionless rotating GPE defined by

Etot(φ) =
∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + F (|φ|2) − Re(φ∗� · Lφ)

]
dx

:= Ekin(φ) + Epot(φ) + Eint(φ) + Erot(φ),

for t > 0. In 3D, the Laplace operator is given by: � = ∇2, where 
∇ := (∂x, ∂y, ∂z)

t is the gradient operator; the spatial variable is 
x = (x, y, z)t ∈ R3 (in 2D, we have ∇ := (∂x, ∂y)

t and x = (x, y)t ∈
R2). The function V represents the external (usually confining) po-
tential. The smooth real-valued function f (ρ) := F ′(ρ) models the 
nonlinearity, setting ρ = |φ|2 as the density function. A first exam-
ple consists in the standard cubic case which reads as

F (ρ) = βρ2/2, (2.2)

and then f (ρ) = βρ , where β is the nonlinearity strength de-
scribing the interaction between atoms of the condensate. This 
parameter is related to the s-scattering length (as) and is posi-
tive (respectively negative) for a repulsive (respectively attractive) 
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interaction. Other kinds of nonlinearities involve e.g. nonlocal non-
linear interactions like the dipole-dipole interaction [18,38–40,53]. 
For vortices creation, a rotating term is added. The vector � is 
the angular velocity vector and the angular momentum is L =
(Lx, L y, Lz) = x ∧ P, with the momentum operator P = −i∇ . In 
many situations, the angular velocity is such that � = (0, 0, ω)t

leading to

� · L = ωLz = −iω(x∂y − y∂x). (2.3)

A direct computation of the energy gradient yields

∇Etot(φ) = 2Hφφ, with Hφ = −1

2
� + V + f (|φ|2) − � · L

and the second-order derivative is
1

2
∇2Etot(φ)[u, u] = 〈

u,Hφu
〉 + Re

〈
f (φ2), u2

〉
.

Let us introduce S = {φ ∈ L2(Rd), ||φ||2 = 1} as the unit spherical 
manifold associated to the normalization constraint. The tangent 
space at a point φ ∈ S is given by TφS = {h ∈ L2(Rd), Re 〈φ,h〉 =
0}, and the orthogonal projection Mφ onto this space is such that 
Mφh = h − Re 〈φ,h〉φ. Writing the Euler-Lagrange equation (first-
order necessary condition for the minimum) associated with our 
problem at a minimum φ ∈ S requires that the projection of the 
gradient on the tangent space S is zero, i.e. Mφ∇Etot(φ) = 0. This 
equation is equivalent to the nonlinear eigenvalue problem

Hφφ = λφ,

where λ := λ(φ) = 〈
Hφφ,φ

〉
is the Lagrange multiplier associated 

to the spherical constraint (also known as the chemical potential).

2.2. Pseudospectral spatial discretization

To find a numerical solution of the minimization problem, 
the function φ ∈ L2(Rd) must be discretized carefully and ac-
curately, most particularly to describe fine details like the vor-
tex lattice structure that can appear. BEC2HPC considers a stan-
dard pseudo-spectral discretization scheme based on Fast Fourier 
Transforms (FFTs) [18,22,23,27]. In 3D, we truncate the wave 
function φ to a square domain [−ax, ax] × [−ay, ay] × [−az, az]
(ax , ay and az being positive), with periodic boundary condi-
tions, and discretize φ with an even number of nx , ny and nz

grid points in the respective x-, y- and z-directions. We describe 
our scheme in 3D (the 2D case being then straightforward). For 
M := (nx, ny, nz), we introduce a uniformly sampled grid: DM :=
{xk1,k2,k3 = (xk1 , yk2 , zk3 )}(k1,k2,k3)∈OM , with OM := {0, . . . , nx −1} ×
{0, . . . , ny − 1} × {0, . . . , nz − 1}, xk1+1 − xk1 = hx , yk2+1 − yk2 = hy

and zk3+1 − zk3 = hz , with mesh sizes hx = 2ax/nx , hy = 2ay/ny

and hz = 2az/nz . By considering the N × N Hermitian matrix(-free) 
operators from CN (N = nxnynz in 3D) to C given by ��� :=
�∂2

x � + �∂2
y� + �∂2

z � and �� · L� := −i� · (x ∧ �∇�), we obtain the 
discretization of the gradient of the energy

(�∇�Etot)(φ) = 2�Hφ�φ,

with

�Hφ� := −1

2
��� + �V � + � f (|φ|2)� − �� · L�.

We set φ := (φ̃(xk1,k2,k3 ))(k1,k2,k3)∈OM (where φ̃ is the approxima-
tion of the function φ) as the discrete unknown vector in CN . 
For conciseness, we identify an array φ in the vector space of 3D 
complex-valued arrays Mnx,ny ,nz (C) (storage according to the 3D 
3

grid) and the reshaped vector φ in CN . In addition, to simplify the 
notations, we forget the brackets �A� and use A to designate the 
matrix operator associated with a continuous operator A, based on 
the FFT approximation. Finally, the cost for evaluating the applica-
tion of a 3D FFT is O(N log N).

For φ ∈CN , the total discrete energy Etot(φ) can be written as 
the sum of the four elementary energies

Etot(φ) = Ekin(φ) + Epot(φ) + E int(φ) + Erot(φ), (2.4)

setting

Ekin(φ) := 1

2
||∇φ||22 = 1

2
〈∇φ,∇φ〉

= 1

2
(〈∂xφ, ∂xφ〉 + 〈∂yφ, ∂yφ〉 + 〈∂zφ, ∂zφ〉),

Epot(φ) := 〈V φ,φ〉, E int(φ) := 〈F (ρ),1〉,
Erot(φ) = −Re(〈� · Lφ,φ〉),

(2.5)

where 1 ∈ CN is the vector with components 1, and ||φ||2 is the 
discretization of the L2(Rd)-norm on the uniform grid subject to 
the discrete hermitian inner product 〈u, v〉 for two complex-valued 
functions defined on the grid DM .

2.3. The Preconditioned Conjugate Gradient (PCG) method

Based on the pseudospectral discretization, we now need to 
compute the solution to the finite-dimensional minimization prob-
lem under normalization constraint

φ ∈ arg min
φ∈CN ,‖φ‖2=1

Etot(φ). (2.6)

In BEC2HPC, we use the Preconditioned Conjugate Gradient (PCG) 
method which differs from the preconditioned gradient method by 
the following update rule for the descent method

dn = −P rn + βnpn−1, (2.7)

where P designates a well-designed preconditioner and the resid-
ual vector is rn := (Hφn

− λn I)φn . The vector φn is the iterate of φ
at step n for the minimization method (a preconditioned descent 
algorithm would lead to the relation dn = −P rn). In addition, we 
define pn = dn − Re

〈
dn,φn

〉
φn as the orthogonal projection of dn

onto the space generated by φn . The step βn is given by the Polak-
Ribière formula β = max(βPR, 0), setting

βPR = 〈rn − rn−1, P rn〉
〈rn−1, P rn−1〉 . (2.8)

We consider the standard choice β = max(βPR, 0), corresponding 
to restarting by the CG method when βPR < 0. For the justifica-
tion of the CG method for constrained minimization, we refer to 
[54,55]. The CG algorithm is then summarized in Algorithm 1. Con-
cerning the choice of θn , we take

θ
opt
n = −Re

〈
(∇Etot)(φn),pn

〉‖pn‖
Re

[
(∇2 Etot)(φn)[pn,pn] − λn

] , (2.9)

and use the same step size control as in the steepest descent al-
gorithm. In practice, these precautions for checking the descent di-
rection and using a stepsize control technique are important when 
located in the neighborhood of a minimum. When a minimum is 
approximately obtained, pn is always a descent direction and the 
stepsize choice (2.9) decreases the energy functional. Finally, we 
use the following robust stopping criterion (see [37])
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Fig. 1. Decomposition strategies for a 3D domain.
while not converged do
λn = λ(φn)

rn = (Hφn
− λn I)φn

βn = 〈rn − rn−1, P rn〉/〈rn−1, P rn−1〉
βn = max(βPR

n , 0)

dn = −P rn + βnpn−1

pn = dn − Re
〈
dn,φn

〉
φn

θn = arg minθ E
(
cos(θ)φn + sin(θ)pn/‖pn‖)

φn+1 = cos(θn)φn + sin(θn)pn/‖pn‖
n = n + 1

end

Algorithm 1: The Preconditioned Conjugate Gradient (PCG) 
method as implemented in BEC2HPC.

En
err := |Etot(φn+1) − Etot(φn)| ≤ ε. (2.10)

This finally leads to the following PCG algorithm.
Let us now focus on the important question of building an effi-

cient and robust preconditioner P as a modification of the descent 
direction, leading then to a closer point to the minimum

dn := −P (Hφn
− λn I)φn. (2.11)

The preconditioner should be an approximation of the inverse of 
the Hessian matrix of the problem. A first preconditioner [37] uses 
only the kinetic energy term through an adaptive preconditioner

Pn
� = (αn

� I − �/2)−1, (2.12)

where αn
� is a positive shifting constant defined by the character-

istic energy

αn
� = Ekin(φn) + Epot(φn) + E int(φn) > 0. (2.13)

This preconditioner provides a convergence independent of the 
grid refinement and is diagonal in the Fourier space. Another nat-
ural approach is to use the diagonal preconditioner based on the 
potential and nonlinear interaction terms

Pn
V = (αn

V I + V + f (|φn|2))−1, (2.14)

with αn
V = αn

� . This preconditioner is well-adapted to large non-
linearities and large domains. Finally, to get a stable performance 
independent of the size of the domain or the spatial resolution, we 
can define the combined preconditioners

Pn
C1

= Pn
V Pn

�, Pn
C2

= Pn
� Pn

V (2.15)

or a symmetrized version

Pn
C = Pn,1/2

V Pn
� Pn,1/2

V . (2.16)

Let us now analyze the computational cost of the PCG. The ap-
plication of the operator P V is almost free (since it only requires 
a scaling of φ), but the naive application of P� requires a FFT/IFFT 
4

pair. However, since we apply the preconditioners after and be-
fore an application of the Hamiltonian, we can reuse the FFT and 
IFFT computations, so that the application of P� does not require 
any additional Fourier transform. Similarly, the use of PC1 and PC2

only needs one additional Fourier transform per iteration, and that 
of the symmetrized version PC two.

To summarize, the cost in terms of Fourier transforms per iter-
ation for the rotating GPE model is

• no preconditioner: 3 FFTs/iteration (get the Fourier transform of 
φ, and two IFFTs to compute �φ and Lzφ respectively),

• P� or P V : 3 FFTs/iteration,
• non-symmetric combined PC1 or PC2 : 4 FFTs/iteration,
• symmetric combined PC: 5 FFTs/iteration.

Note that this total cost might be different for another type of GPE 
model e.g. when a nonlocal dipole-dipole interaction is included 
[18,53].

3. Implementation of the PCG method

In this section, we present an implementation of the previ-
ous PCG method for computing the stationary states of the GPE. 
The resulting code, called BEC2HPC, is developed in C++ and uses 
MPI communications for distributed computing. The code is avail-
able online at https://team .inria .fr /bec2hpc/. A Python interface is 
provided for defining the physics of the problem and external visu-
alization tools such as Paraview can be used to exploit the results 
of the simulations. The code takes advantage of existing HPC li-
braries and even if we focus here on the implementation of the 
PCG methods, it can itself be leveraged to implement other spectral 
methods or solve e.g. problems related to the dynamics of BECs. In 
particular, schemes for simulating the dynamics of the GPE will be 
included in a future version of BEC2HPC.

3.1. Implementation of FFT-based schemes in distributed memory

The wave function φ is truncated to a square domain with pe-
riodic boundary conditions and discretized on a grid with nx , ny , 
nz points along each dimension x, y and z, respectively. This grid 
structure leads to multidimensional arrays on which we perform 
one-dimensional discrete Fourier transforms along each dimen-
sion independently. For a 2D domain, we compute the transform 
of each column and each row of a matrix to obtain [[∂x]] and 
[[∂y]]. In distributed-memory, these arrays are divided among a 
set of processes which each runs in their own memory address 
space. Several libraries implement parallel FFT algorithms working 
on distributed data. These codes use either 1D slab (FFTW [56]) or 
2D pencil decompositions (PFFT [57], P3DFFT [58], 2DECOMP&FFT 
[59]). The idea is to simply reuse serial FFT algorithms in local 
memory. A 1D domain distribution along the dimension X (Fig. 1) 
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of a 3D domain allows to compute both [[∂y]] and [[∂z]] without 
any interprocess communications as the grid elements involved in 
the computation of each 1D FFT along the Y and Z lines are as-
signed to the same process. A permutation of the axis of the array 
makes the computation along X local at the cost of all-to-all com-
munication to transpose the distributed array. A 2D pencil domain 
decomposition only maintains the data placement useful for one 
direction and requires transpositions for each of the other direc-
tions but it exhibits more parallelism as a 1D decomposition along 
the dimension X is limited to using at most nx processes.

BEC2HPC is based on FFTW 3.3 (see [56]). We use the 1D block 
distribution of the data (distributed along the first dimension), the 
sequential FFT routine and the distributed transpose routine pro-
vided by the library. Using the FFTW’s advanced interface, one can 
perform multiple sequential 1D complex FFT simultaneously on 
non-contiguous data (fftw_plan_many_dft), allowing to com-
pute directly the FFTs along Y and Z on each process. The MPI 
transpose routine used internally by FFTW for multidimensional 
transforms is also exposed in its API (fftw_mpi_plan_many_
transpose for complex numbers) and is called directly for the 
computation of [[∂x]]. FFTW comes with a set of routines for the 
creation of the domain distribution (dividing the data among the 
MPI processes), the allocation of memory (with due considera-
tion to alignment for SIMD instructions and the extra memory 
that might be needed for a data redistribution). Computation of 
a Fourier transform is preceded by a preprocessing phase selecting 
at runtime an efficient strategy for computing a transform on the 
current hardware: it creates a plan (an opaque data type) describ-
ing the algorithm and transforms can then be executed repeatedly.

3.2. BEC2HPC parallel code design

Building FFT-based schemes on the foundation of FFTW is a 
good starting point as this library is fast, freely available and be-
came defacto standard for scientific softwares or for benchmarking 
other FFT libraries. In addition, other FFT libraries such as the Intel 
Math Kernel Library (MKL) offers FFTW interfaces without chang-
ing the program source code. NVIDIA also provides FFTW interfaces 
to the cuFFT library. However, it seems important to integrate in 
the initial design more general data distributions as well as the 
possibilities of using hybrid MPI-plus-thread approach in the fu-
ture. On multicore clusters, OpenMP directives can be used to 
distribute the set of serial 1D FFT to be performed within a MPI 
process. Multi-threaded FFT algorithms can also replace serial FFT 
to leverage parallelism along a second dimension as FFTW provides 
multi-threaded transforms with exactly the same API as the serial 
version.

Currently, BEC2HPC only uses FFTW but we avoided binding the 
code directly to this third-party library. FFTW’s routine calls and 
data types are encapsulated and BEC2HPC defines its own interface 
for data distribution, transforms and transposition. In BEC2HPC, the 
data distribution is described by a Map object taking up ideas of 
well established parallel scientific libraries [60]. Map objects con-
tain the details of the block distribution along each dimension (in-
cluding domain dimensions, local and global partitioning indices) 
and distributed objects are subsequently created from Map objects. 
The distributed arrays class gives methods for creating multidi-
mensional arrays, accessing local array elements. It also provides 
foreach loops for performing pointwise operations for each domain 
element and parallel reduce using C++11 lambda. It hides much of 
the complexity of the data distribution and facilitates the applica-
tion of operators and the computation of norms and convergence 
criteria. As a result, the grid distribution, the local indices and MPI 
routine do not appear on the implementation of the PCG algo-
rithm, improving the code readability. These classes also provide 
a high-level parallel abstraction layer that can evolve to support 
5

different memory layout and programming paradigm for multicore 
processors.

The spectral numerical method itself is implemented on top of 
this using a modular design to ease the change of components 
such as preconditioners or stopping criterias as described in Sec-
tion 2. At each iteration, transforms are never computed twice and 
operators such as [[�]] or [[Lz]] are stored along side φn to be 
used on each components.

4. Getting started with BEC2HPC

This section proposes a first BEC2HPC example and shows off 
the basics usage of BEC2HPC. BEC2HPC provides both a C++ and 
python interfaces. In this paper, we present the Python interface 
built using the Boost Python Library, a framework for exposing the 
C++ classes functions and objects to Python.

4.1. Installation

The build process of BEC2HPC is managed by CMake and re-
quires a C++11 compiler, a MPI library and several external li-
braries compiled with parallel support (namely Boost, FFTW and 
HDF5). Python3 is also needed for running most of the exam-
ples. These softwares are usually pre-installed on HPC machines. 
We also provide a Vagrant setup to automatically configure a vir-
tual computing environment suitable for compiling and running 
BEC2HPC on personal computers. Vagrant [61] is a popular tool 
for building virtual machines (or containers) from a configuration 
file describing the machine setup and the necessary steps to create 
a ready-to-use machine. The virtual machine behaves like a sepa-
rate computer system and can be accessed via a SSH connection 
as if it was a remote physical machine. Fig. 2 shows how to cre-
ate a Vagrant managed virtual machine for BEC2HPC. Within the 
virtual machine, the bec2hpc directory is shared with the host 
and therefore contains the source code. build is an out-of-source 
build directory to keep separate the files generated by the compi-
lation.

4.2. A first example

Let us consider the physical problem governed by the following 
GPE

i∂tψ(x, t) = (−1

2
� + V (x) + β|ψ(x, t)|2 − � · L)ψ(x, t),

(x, t) ∈Rd ×R∗+,

(4.17)

where V (x) is the external confining potential, β is the nonlin-
earity strength describing the interaction between atoms of the 
condensate, � is the angular velocity vector and L is the angu-
lar momentum operator. By default in BEC2HPC, the rotation term 
is such that � · L = ωLz = −iω(x∂y − y∂x) (i.e. � = (0, 0, ω)t ), and 
the nonlinearity is cubic, i.e. f (|ψ |) = β|ψ |2. The harmonic poten-
tial V is given by

V (x, y, z) = 1

2
(γ 2

x x2 + γ 2
y y2 + γ 2

z z2), (4.18)

with γx = γy = γz = 1 per default in 3D, and γx = γy = 1, γz = 0
in 2D. The predefined initial guess is the Thomas-Fermi approxi-
mation

φ0 = φTG
β

||φTG
β ||2

, with φTG
β =

⎧⎪⎨
⎪⎩

√
μTG

β − V (x)

β
, if μTG

β > V (x),

0, otherwise,

(4.19)
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Fig. 2. Creating a Vagrant managed Virtual Machine (VM) for BEC2HPC.

Fig. 3. A first example.
where the eigenvalue approximation μTG
β is given by

μTG
β = 1

2

{
(4βγxγy/π)1/2, d = 2,

(
15

4π
βγxγyγz)

2/5, d = 3.

The stopping criterion is fixed by default to En
err := |Etot(φn+1) −

Etot(φn)| ≤ ε, with ε = 10−12.
We consider now that we want to compute the ground state 

of a 2D rotating condensate with a cubic nonlinearity and a har-
monic potential (setting γx = γy = 1, γz = 0). Fig. 3 shows a 
first example of the BEC2HPC API. The computational domain 
and spatial mesh sizes are chosen respectively as [−16, 16]2 and 
h = 1

4 (M = 128). This example can be run within the virtual ma-
chine with mpiexec -n 1 python simple-example.py. 
The physics and solver parameters are listed in two distinct 
python hashmaps. The physics submodule can be used to gen-
erate the initial guess. The pcg method returns the solution 
solver_phi_n along with information about the solver exe-
cution in a hashmap stats. This includes in particular the en-
ergy at the final state, the convergence history and the compu-
tational time to reach the stationary state (Fig. 4). The solution 
solver_phi_n can be saved in a HDF5 file as shown in Fig. 5. 
HDF5 [62] is a widely-used standard binary format for storing 
numerical data and BEC2HPC uses the Parallel HDF5 library to ef-
ficiently write on disk in a parallel environment (using MPI-I/O). 
The solution can later be postprocessed or visualized with a va-
6

riety of tools such as Python or Paraview (see also Section 5.3). 
The solution can also be transferred to a single processor by using 
local_phi = solver.array.gather(phi). For instance, it 
can be used to plot phi_n without saving it to a file. Fig. 6 shows 
how to load a HDF5 file and plot the density function ρ = |φ|2
in Python. The provided function bec2hpc.utils.plot2d uses 
matplotlib internally. Fig. 7 shows the square of the amplitude of 
the wave function on the computational domain for ω = 0.5 and 
β = 500. The stats output of solver.pcg can be saved as a 
JSON file (or in any human-readable format) along side the input 
parameters to retain the information of a simulation run.

5. BEC2HPC advanced usage

After this step-by-step example on a model problem, we now 
describe in more details some of the code functionalities for defin-
ing the physical problem and the numerical scheme. We also 
present along the way how to manage the distributed data struc-
tures efficiently in Python.

5.1. Defining the initial data

The iterative method for computing the solution of the mini-
mization problem needs to be initialized with a guess. As the min-
imization algorithm is a local optimization procedure, the choice 
of the initial guess can lead to a local minimum and therefore a 
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Fig. 4. Output of the solver.pcg function in a JSON format.

Fig. 5. Saving the ouput of the solver.pcg function.

different final converged state [37]. The initial guess is usually an 
approximation of the solution of a simpler problem and BEC2HPC 
provides initial data typically found in the literature such as a 
centered Gaussian for fast rotations or the Thomas-Fermi approx-
imations (4.19) for strong nonlinear interactions [18,36,37]. In 2D, 
the centered Gaussian is defined by

φ(x) = (1 − ω)φa(x) + ωφb(x)

||(1 − ω)φa(x) + ωφb(x)|| , (5.20)

where

φa(x) = 1√
π

e−(γxx2+γy y2)/2, φb(x) = (γxx + iγy y)φa(x).

(5.21)

It is also possible to provide your own initial guess to the pcg 
method once you become familiar with the BEC2HPC distributed 
array class. Fig. 8 shows how to implement the Gaussian defined 
7

Fig. 6. Compute and plot the density function |φ|2.

Fig. 7. Density function |φ|2 of the ground state.

by (5.20) for γx = γy = 1 and ω = 0, a simple choice for weak 
nonlinear interaction and subcritical frequencies.

In Python, the elements of a DistributedArray are acces-
sible as a numpy array by using the getData() method. This 
method returns a numpy array containing the local part of the dis-
tributed array without making a copy of the underlying data. The 
numpy array is actually a view of the original data and modifying 
the numpy array changes the distributed array (and vice versa). 
The data distribution of an array is described by a Map object and 
can be retrieved using the getMap() method on the array. The 
python ellipsis syntax (‘...’) is used to assign the result of the 
calculation to the original numpy array memory buffer (otherwise, 
with a simple array assignment, phi_0 would not be referencing 
the BEC2HPC array anymore).

5.2. Defining the trapping potential

BEC2HPC comes with predefined potential functions for an har-
monic trap (4.18) and other potentials with added potential terms 
such as the harmonic-plus-quartic potential

V (x) = (1 − α)
∑

ν=x,y

γνν
2 + κ (x2 + y2)2

4

{ +0, d = 2,

+γ 2
z z2, d = 3.

(5.22)

Fig. 9 shows how to provide a user-defined potential in Python. 
Either Python function or a lambda form could be specified on 
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Fig. 8. Defining a initial guess.

Fig. 9. User-specified potentials.
the parameter list describing the physics of the problem. One can 
also implement its own C++ potential class by deriving the C++ 
Potential abstract class and instantiating it in Python. On the 
same model, it is possible to redefine the nonlinearity part of the 
equation as well as the stopping criteria and the preconditioner to 
be used during the nonlinear conjugate gradient.

5.3. 3D simulation and visualization

The previous examples were in 2D for conciseness but BEC2HPC 
has been designed with large 3D problems in mind. For code main-
tenance purpose, 2D and 3D cases share the same code base inter-
nally (there is no code duplication). The functions described in 2D 
in this paper are all available in 3D as well. Running a 3D simu-
8

lation only requires to define the computational boundary and the 
number of grid points in the third dimension (by adding Lz and 
nz in the physics parameter list).

3D visualizations of large problems might be more tricky but 
thankfully, specialized applications such as ParaView can be lever-
aged [63]. ParaView cannot read directly a HDF5 file as it needs 
information concerning the semantic of the data. Such informa-
tion can be provided by a simple XDMF file describing the data 
scheme. XDMF (eXtensible Data Model and Format) uses XML 
to store metadata and refers to external HDF5 files for the val-
ues themselves. It is a standard way format to describe the raw 
data produced by HPC codes and BEC2HPC provides a function 
bec2hpc.utils.save_xdmf(phi_n, ’phi_n.xdmf’) to 
create a XDMF describing the semantic of a BEC2HPC HDF5 output 
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created with the call bec2hpc.utils.save_hdf5(phi_n,
’phi_n.hdf5).

The ParaView Python API gives full access to its data analysis 
and visualization capabilities. It can be used to programmatically 
visualize the result of a BEC2HPC simulation. When running multi-
ple tests, it might be handy to define a visualization with the Par-
aView application, save the visualization state and then reload it 
from Python. An example to load a ParaView state file (a file with 
a .pvsm extension) is available in the examples/paraview di-
rectory of BEC2HPC.

5.4. Grid manipulation

In order to both limit the number of iterations and reach the 
lowest energy state, the initial guess of a simulation must be cho-
sen close to the expected solution. Several choices for an initial 
guess are described in subsection 5.1. Another approach to define 
an initial guess is to use the results of a previous simulation. It 
can give good results when the simulation parameters varies only 
slightly or when we make them gradually changing. For large grid 
sizes, one can use the results of the same simulation performed on 
coarser grid involving less points. It is also possible to tune the size 
of the domains once we learned on a fastest, less accurate simu-
lation the space occupied by the condensate for a given rotational 
speed and potential.

The mapping of a coarse grid data on a finer grid is done using 
an interpolation. Fig. 10 gives an example for linearly interpolating 
a 2D grid in Python. In this example, the coarse grid solution is 
simply gathered on a single processor and the interpolation is done 
in sequential using the interpolate.interpn function of the 
SciPy library. This process can be repeated on several grid levels to 
form the hierarchical multigrid strategy presented in [36,37] and 
implemented with BEC2HPC in Fig. 11. The ground state compu-
tation begins on a coarse grid of 2Ncoarse × 2Ncoarse points and the 
grid is successively refined until a finest grid with 2Nfine × 2Nfine . 
The stopping criteria can be relaxed for the coarse grids as shown 
in the example.

Nevertheless, strategies based on simple continuation or multi-
grid strategies should be used carefully since they can also some-
times provide intermediate or final solutions which are not correct. 
More advanced algorithms [20,30,64] should probably be consid-
ered to obtain fast and robust methods.

6. Numerical examples

6.1. Experimental setup

In this section, we present some results obtained from simula-
tions with BEC2HPC in 2D/3D for fast rotating BECs on a parallel 
cluster. Let us remark that the aim of the paper is not to compare 
BEC2HPC to other solvers. Nevertheless, it would be interesting to 
have some fair comparisons between codes, and in particular with 
[47,51] where efficient solutions for simulating rotating BECs are 
given. Let us also recall that, from [37], it is already stated that the 
PCG is much more efficient than an optimized normalized gradient 
flow/imaginary time method with pseudospectral approximation. 
Experiments were conducted on NIC4, a massively parallel cluster 
of the University of Liège, installed in the framework of the Bel-
gium consortium of HPC centers (CÉCI) and funded by F.R.S.-FNRS 
under Grant No. 2.5020.11. It features nodes with two 8-cores Intel 
E5-2650 processors at 2.0 GHz and 64 GB of RAM (4 GB/core), in-
terconnected with a QDR Infiniband network. We focus here on the 
strong scaling (how the solution time varies with the number of 
processors for a fixed total problem size) and reach indeed a limit 
where each MPI processes does not have much computing work 
to do. The scalability problem that occurs with very small problem 
9

sizes per processor by using hybrid MPI/OpenMP optimization will 
be addressed in the future.

In the following examples, we consider the cubic nonlinearity 
and the harmonic-plus-quartic potential (5.22), with γx = γy = 1, 
α = 1.2 and κ = 0.3. In 3D, we fix γz = 3. This potential leads to 
the existence of stationary states for highly rotating BECs for val-
ues ω larger than one, unlike the standard harmonic potential case. 
We initialize the PCG method with the Thomas-Fermi ansatz (4.19)
presented in Section 4.2. We only report the results obtained with 
the symmetrical version of the combined preconditioner (2.16) as 
it outperforms the other tested preconditioners. For the stopping 
criterion, we use En

err := |E(φn+1) − E(φn)| ≤ ε which is well suited 
for rotating BECs (to include the non-uniqueness of the minimum 
up to a rotation). Let us note here that all the computations pre-
sented here were already checked in [37] and therefore represent 
some stationary states, which are expected to be some the ground 
state of the problem under study. However, the PCG remains a lo-
cal minimization algorithm (similarly to imaginary time methods) 
and therefore the iterated solution may converge to a local min-
imizer which is a not the ground state (see also [37] for explicit 
examples). This is a fundamental limit of the local optimization 
techniques under constraint. In the future, improvements of these 
local methods should be developed to have more robust solutions 
for the most complex cases. In particular, let us mention that two 
initial guess may lead to two different solutions with very close 
total energies.

The experiments presented here were carried out for a wide 
range of rotation speeds and nonlinearity strengths. The strong 
scaling of the code is also tested by running the same exper-
iments with an increasing number of MPI processes. To facili-
tate the testing when several parameters need to vary and to 
run the solver several times, we provide an easy way to gen-
erate and launch a set of experiments. These scripts are in-
cluded in the example directory of the BEC2HPC distribution. 
Fig. 12 shows how to generate input parameters lists describ-
ing the physics for each combination of ω and β where ω ∈
{1, ..., 4.5} and β ∈ {1000, 5000, 10000}. The Python dictionary 
physics_params_set includes a description of the parameters 
range for ω and β . utils.extend_params generates all possi-
ble combinations of the given input parameters for the pcg func-
tion. In this example, each parameters list is saved in its own JSON 
file and the utility function gen_id generates a string to name the 
experiments (for example, 2D__L_20__n_640__Omega_1__
Beta_1000.json). These JSON files can then be used to run 
BEC2HPC as shown in Fig. 13. This last script takes a list of JSON 
files as input parameter and can be used within a submission 
script for a job scheduler on a HPC machine.

6.2. Numerical results in 2D

In 2D, the computational domain and mesh sizes are cho-
sen respectively as [−20, 20]2 and h = 1

16 (M = 640). Concerning 
the stopping criterion, the tolerance is set to ε = 10−14. Fig. 14
shows the converged stationary states computed by BEC2HPC for 
β = 1000 and different rotation speeds. We also provide the value 
of the chemical potential λ for each case. By increasing the rotation 
velocity, the Bose-Einstein condensate expands into a ring shaped 
BEC with an increasing central radius. In particular, for ω = 5, 
we get a thin ring with one layer of uniformly spaced vortices. 
Fig. 15 shows additional results for a larger nonlinearity strength, 
i.e. β = 10000, showing that more vortices characterize the BEC for 
larger values of β .

In Table 1, the number of MPI processes is fixed to n = 32. 
We compare the CPU times (in seconds) needed to have the PCG 
method converging, for various values of ω and β . The CPU time 
is directly related to the number of iterations #it. In particular, 
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Fig. 10. Coarse grid interpolation.
higher rotation speeds ω and stronger nonlinearities β usually re-
quire more iterations (and so more simulation times) but it is not 
always the case. Using a stopping criteria based on the energy 
difference is advantageous to avoid situations where the residual 
evolves without changing the energy.
10
Table 2 presents the number of iterations #it and the CPU time 
required to compute the ground state for β = 1000 and different 
numbers of MPI processes. This shows how the computational time 
scales with the number of MPI processes. Running the computa-
tion on 32 cores is 15-20 times faster than on a single core. The 
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Fig. 11. A multigrid approach for defining the initial guess.

Fig. 12. Generating a JSON file for each combination of the parameters ω and β .
scalability results are consistent with the scalability of the 2D FFT 
algorithm in distributed memory. The number of iterations varies 
slightly with the number of processors but the same final state 
is nonetheless reached independently of the number of MPI pro-
cesses.
11
Finally, Table 3 shows the resolution of a very difficult 2D prob-
lem (β = 10000, ω = 5) on a finer grid (M = 2048) using 32 and 
128 processors. A fast and precise resolution of such challenging 
problems is only possible thanks to the robustness of the numeri-
cal method and its parallel implementation.
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Fig. 13. Running BEC2HPC using JSON files as the description of the physical setups.

Fig. 14. Contour plots of the density function |φg |2, for β = 1000 (procs = 32).

Table 1
CPUs time (seconds) to compute the ground states of the GPE for various values of ω and β (procs = 32).

β ω = 1 1.5 2 2.5 3 3.5 4 4.5

1000 57.79 53.48 91.28 123.36 132.23 173.64 158.41 357.56
5000 97.66 387.07 352.27 685.75 329.34 254.04 253.72 4823.42
10000 489.68 1104.76 1279.08 562.53 960.99 1170.01 3164.85 5603.2
12
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Fig. 15. Contour plots of the density function |φg |2, for β = 10000 (procs = 32).

Table 2
2D scalability tests.

# it time (s) speedup

1 951 1219.50 1.00
2 888 605.14 2.02
4 891 310.98 3.92
8 886 163.42 7.46
16 914 96.76 12.6
32 876 57.79 21.1

(a) β = 1000,ω = 1

# it time (s) speedup

1 1390 1768.86 1.00
2 1411 992.01 1.78
4 1362 488.91 3.62
8 1378 255.94 6.91
16 1347 146.16 12.10
32 1377 91.28 19.38

(b) β = 1000,ω = 2

# it time (s) speedup

1 1518 1965.75 1.00
2 1888 1312.84 1.50
4 1805 650.94 3.02
8 1850 344.82 5.70
16 1791 192.15 10.23
32 1839 123.36 15.94

(c) β = 1000,ω = 2.5

# it time (s) speedup

1 7746 9976.62 1.00
2 6434 4455.09 2.24
4 7298 2631.25 3.79
8 7246 1355.25 7.36
16 7292 796.05 12.53
32 7387 498.40 20.02

(d) β = 1000,ω = 5
Table 3
Ground states of the GPE for β = 10000, ω = 5, M = 2048.

# it time speedup

32 18105 10971.45 s 3 hrs 1.0
128 18560 3973.70 s 66 min 2.76

6.3. Numerical results in 3D

We solve now various 3D problems. The computational domain 
is [−8, 8]3 and the tolerance of the stopping criterion is set to 
ε = 10−12. Fig. 16 presents the results of four experiments for 
13
the mesh size h = 1
8 (M = 128). 3D simulations allow to visual-

ize the torus shape of the BEC as well as the vortices lines. The 
scalability results presented in Table 4 are again consistent with 
the scalability of the 3D FFT algorithm and the cost of parallel 
transpose algorithms. Running on 32 cores can be more than 5 
times faster than on 4 cores but the speedup is reduced when 
the number of iterations increases unfavorably. According to our 
experiments, this instability in the number of iterations occurs 
when the grid resolution is not fine enough. Fig. 17 and Table 5
present the results of the same experiments on a finer grid with 
h = 1

16 (M = 256) for 32 and up to 256 cores. By refining the 
grids, each iteration is more costly in computational time and the 
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Fig. 16. Isosurface |φg |2 = 10−3.

Table 4
3D scalability tests (M = 128). The computational domain is [−8, 8]3, h = 1

8 (M = 128), ε = 10−12.

# it time (s) speedup

4 753 1479.90 1.00
8 756 780.97 1.89
16 755 437.01 3.39
32 755 264.64 5.59

(a) β = 100,ω = 1.4

# it time (s) speedup

4 514 1057.14 1.00
8 515 537.19 1.97
16 515 292.62 3.61
32 517 177.69 5.95

(b) β = 100,ω = 1.8

# it time (s) speedup

4 3632 7019.09 1.00
8 3713 3801.36 1.85
16 3907 2263.74 3.1
32 4257 2409.29 2.91

(c) β = 5000,ω = 3

# it time (s) speedup

4 6512 13091.23 1.00
8 6602 6843.93 1.91
16 7450 4352.26 3.01
32 7656 3411.37 3.84

(d) β = 10000,ω = 3
resolution also takes more iterations. The computations become 
rapidly expensive. For example, on this finer grid, more than 3 
hours are needed to solve the β = 10000, ω = 3 test case on 256 
processors.

7. Conclusion

In this paper, we presented BEC2HPC which is a parallel solver 
for computing the stationary states of the rotating Gross-Pitaevskii 
equation for the modeling of 2D/3D Bose-Einstein condensates. The 
scheme implemented in BEC2HPC is based on a preconditioned 
conjugate gradient for the minimization of the energy functional 
under normalization constraint, combined with a pseudo-spectral 
14
approximation scheme in space (using FFT). This leads to an effi-
cient and robust code for complex problems, that can also be used 
for problems related to the nonlinear Schrödinger equation. After 
a presentation of the implementation aspects, we explain how to 
use the code on a first 2D example. More complicate 2D and 3D 
test cases are presented next to illustrate some specific coding as-
pects of the code and to show the scalability of the code for larger 
problems.

Future developments of BEC2HPC concern the possibility of 
simulating the dynamics of the rotating GPE by various schemes, 
the extension to systems of GPE (stationary states and dynamics) 
and the possibility to simulate nonlocal nonlinear effects like for 
example for the case of dipole-dipole interactions.
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Fig. 17. 3D color map of |φg |2.

Table 5
3D scalability tests (M = 256). Domain is [−8, 8]3, h = 1

16 (M = 256), ε = 10−12.

# it time (s) speedup

32 1609 4541.32 1.00
64 1617 2731.90 1.66
128 1611 2173.89 2.09
256 1611 839.60 5.41

(a) β = 100,ω = 1.4

# it time (s) speedup

32 1986 5404.94 1.00
64 2025 3300.06 1.64
128 2028 2366.42 2.28
256 2035 1215.22 4.45

(b) β = 100,ω = 1.8

# it time (s) speedup

32 4071 11158.37 1.00
64 4266 7170.47 1.56
128 4330 5832.11 1.91
256 4340 2335.89 4.78

(c) β = 5000,ω = 3

# it time (s) speedup

256 22075 12153.14 1.0

(d) β = 10000,ω = 3
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