
Computer Physics Communications 265 (2021) 108007

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

BEC2HPC: A HPC spectral solver for nonlinear Schrödinger and rotating

Gross-Pitaevskii equations. Stationary states computation ✩,✩✩

Jérémie Gaidamour a, Qinglin Tang b, Xavier Antoine a,∗
a Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
b School of Mathematics, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 December 2020
Received in revised form 9 April 2021
Accepted 16 April 2021
Available online xxxx

Keywords:
Bose-Einstein condensation
Nonlinear Schrödinger equation
Gross-Pitaevskii equation
Stationary states
Pseudo-spectral method
Nonlinear conjugate gradient
High performance computing

We present BEC2HPC which is a parallel HPC spectral solver for computing the ground states of the
nonlinear Schrödinger equation and the Gross-Pitaevskii equation (GPE) modeling rotating Bose-Einstein
condensates (BEC). Considering a standard pseudo-spectral discretization based on Fast Fourier Trans-
forms (FFTs), the method consists in finding the numerical solution of the energy functional minimization
problem under normalization constraint by using a preconditioned nonlinear conjugate gradient method.
We present some numerical simulations and scalability results for the 2D and 3D problems to obtain
the stationary states of BEC with fast rotation and large nonlinearities. The code takes advantage of ex-
isting HPC libraries and can itself be leveraged to implement other numerical methods like e.g. for the
dynamics of BECs.

Program summary
Program title: BEC2HPC
CPC Library link to program files: https://doi .org /10 .17632 /mdzpw4dr4t .1
Licensing provisions: GPLv2
Programming language: C++, Python
Nature of problem: This software computes the stationary states of rotating Bose–Einstein condensates
(BEC) modeled by the Gross–Pitaevskii equation (GPE). It implements a numerical method that is partic-
ularly effective for BEC with fast rotation and large nonlinearities. The parallel implementation allows to
perform large-scale simulations of 2D or 3D problems on parallel computing platforms.
Solution method: The stationary states are computed using an iterative pseudo-spectral method based on
Fast Fourier Transforms. The computation takes the form of a constrained minimization problem solved
using a preconditioned nonlinear conjugate gradient method. This solver is implemented in distributed
memory using MPI and a decomposition of the computational domain.
Additional comments including restrictions and unusual features: The algorithms are implemented in C++ and
MPI but a Python interface is provided for defining the physics of the problem. Results can be exported
to HDF5 files and visualized with external tools such as ParaView. The code can be used to implement
other spectral methods in parallel or to solve problems related to the dynamics of BECs.

© 2021 Elsevier B.V. All rights reserved.
✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Corresponding author.
E-mail addresses: jeremie.gaidamour@univ-lorraine.fr (J. Gaidamour),

qinglin_tang@163.com (Q. Tang), xavier.antoine@univ-lorraine.fr (X. Antoine).
URL: http://iecl.univ-lorraine.fr/~xantoine/ (X. Antoine).
https://doi.org/10.1016/j.cpc.2021.108007
0010-4655/© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Bose-Einstein Condensates (BECs) have been first predicted the-
oretically by S.N. Bose and A. Einstein, before their experimental
realization in 1995 [1–4]. This state of matter has the interesting
feature that macroscopic quantum physics properties can emerge
and be observed in a laboratory experiment. The literature on BECs
grown very fast over the last two decades in atomic, molecular,
optics and condensed matter physics. Important applications re-
lated to this new physics are now appearing, like e.g. in quantum

https://doi.org/10.1016/j.cpc.2021.108007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108007&domain=pdf
https://doi.org/10.17632/mdzpw4dr4t.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:jeremie.gaidamour@univ-lorraine.fr
mailto:qinglin_tang@163.com
mailto:xavier.antoine@univ-lorraine.fr
http://iecl.univ-lorraine.fr/~xantoine/
https://doi.org/10.1016/j.cpc.2021.108007

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
computing [5]. Concerning the most important directions, a spe-
cial attention has been directed towards the understanding of the
nucleation of vortices [6–12], properties of dipolar gases [13,14] or
also multi-components BECs [13,15,16]. For temperatures T which
are much smaller than the critical temperature Tc , the macroscopic
behavior of a BEC can be correctly described by a condensate wave
function ψ as the solution to a Gross-Pitaevskii Equation (GPE).
Therefore, being able to numerically calculate efficiently the solu-
tion of such a class of equations is extremely useful. Concerning
the main questions related to BECs, we can cite the calculation of
the stationary states (ground/excited states) as well as the real-
time dynamics [13,17–20].

In the present paper, we consider the problem of the com-
putation of stationary states (most particularly ground states) of
the rotating GPE. A few methods are available in the literature
to numerically obtain them. For example, some algorithms are
based on appropriate discretizations of the continuous normal-
ized gradient flow/imaginary-time formulation [13,18,21–27], lead-
ing to various iterative algorithms. The methods are general and
can be directly extended to many physical situations (e.g. dipolar
interactions, multi-components GPEs...) [13,18,22,23,28]. Other ap-
proaches rather solve numerically the nonlinear eigenvalue prob-
lem [29,30] or the minimization of the energy functional by us-
ing optimization techniques under constraints [31–35]. Regularized
Newton-type methods can also be used [36]. In the present pa-
per, we consider the constrained nonlinear Preconditioned Conju-
gate Gradient (PCG) method with a pseudo-spectral discretization
scheme for the rotating GPE. This approach, developed in [37] and
presented shortly in Section 2, provides an efficient and robust way
to solve the minimization problem. Even if only the rotating GPE
is considered here, the method can be extended to other situations
(see [38] for dipole-dipole interactions or [39,40] for nonlinear
fractional GPEs). The main goal of the paper is to introduce the
solver BEC2HPC, to explain how to use its functionalities and to
provide a few examples. Some future developments will include
general systems of GPEs, as well as additional numerical methods
for the dynamics of the GPE. Finally, let us remark that the GPE
can be simplified to the nonlinear Schrödinger equation. Therefore,
the BEC2HPC solver can also be useful to simulate other physical
situations than BEC, where the Schrödinger equation has to be nu-
merically solved efficiently and accurately.

Concerning the available solvers for the GPE (and nonlinear
Schrödinger equation), several contributions exist in the litera-
ture. Adhikari, Muruganandam and their co-authors developed in
a series of papers some finite-difference codes for computing the
stationary states and dynamics of GPEs without rotation. Var-
ious implementations are available, including codes written in
Fortran [41,42], C [41,43], with OpenMP/MPI/CUDA/GNU versions
[44–46]. In addition, the contribution [47] proposes a code that
can solve the GPE with rotation term. In [48], a Matlab toolbox
called OCTBEC is designed for the optimal control of BECs. The
GPU-accelerated Matlab/C toolbox NLSEmagic is developed in [49]
for solving the multi-dimensional nonlinear Schrödinger equation
through finite-difference in space and with a fourth-order Runge-
Kutta scheme in time. In [50], a finite element C++ toolbox is
proposed for computing the stationary states (based on a New-
ton method) and dynamics of nonlinear Schrödinger equations.
Another finite element toolbox has been recently developed with
Freefem++ for solving various problems related to the 2D and 3D
rotating GPE [51]. Finally, GPELab [28,52] is a Matlab toolbox that
can solve a large class of problems related to the GPE, including
stationary states, dynamics, and the possibility to handle some ad-
ditional stochastic terms. The wide variety of problems which can
be solved by GPELab leads to the possibility of simulating many
complex physical configurations related to BECs, which makes the
toolbox very attractive. For the stationary states, the solver used
2

in GPELab may sometimes converge slowly for large nonlineari-
ties and high rotation speeds, since i) it is based on the normal-
ized gradient flow/imaginary time, and ii) the implementation in
Matlab does not permit to use optimally the HPC ressources. In
BEC2HPC, we use the PCG algorithm which is known to outperfom
the normalized gradient flow formulation as shown in [37]. In ad-
dition, BEC2HPC proposes a HPC implementation of the algorithm,
for the 2D and 3D GPE with rotation term. The resulting solver
is then very robust, efficient and highly accurate since it uses a
pseudo-spectral approximation in space.

The plan of the paper is the following. In Section 2, we intro-
duce the PCG algorithm that is used in BEC2HPC for computing the
stationary states. Section 3 gives some information about the way
BEC2HPC is developed, most particularly regarding the FFT imple-
mentation and some parallelization aspects. In Section 4, we pro-
pose a relatively simple example to start with the use of BEC2HPC,
after its installation. Section 5 is devoted to the most advanced fea-
tures of BEC2HPC, including the data definition and the parameter
selection, the use of the visualization tool (ParaView). In Section 6,
we provide more examples and report some performances of the
solver in 2D and 3D. Finally, we conclude in Section 7.

2. The PCG method for computing stationary states of the GPE

2.1. Notations and formulation

Let us consider the problem of computing a ground state of a
d-dimensional (d = 2, 3) BEC which can be written under the form
of the constrained minimization problem{

Find φ ∈ L2(Rd) such that
φ ∈ arg min||φ||2=1 Etot(φ),

(2.1)

where the L2(Rd)-norm of φ is defined as

||φ||22 =
∫
Rd

|φ|2dx :=< φ,φ >

and the hermitian inner-product is

∀(u, v) ∈ L2(Rd) × L2(Rd), < u, v >:=
∫
Rd

uv∗dx,

defining v∗ as the complex conjugate of v . For the minimization
problem (2.1), we introduce the total energy functional Etot for the
dimensionless rotating GPE defined by

Etot(φ) =
∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + F (|φ|2) − Re(φ∗� · Lφ)

]
dx

:= Ekin(φ) + Epot(φ) + Eint(φ) + Erot(φ),

for t > 0. In 3D, the Laplace operator is given by: � = ∇2, where
∇ := (∂x, ∂y, ∂z)

t is the gradient operator; the spatial variable is
x = (x, y, z)t ∈ R3 (in 2D, we have ∇ := (∂x, ∂y)

t and x = (x, y)t ∈
R2). The function V represents the external (usually confining) po-
tential. The smooth real-valued function f (ρ) := F ′(ρ) models the
nonlinearity, setting ρ = |φ|2 as the density function. A first exam-
ple consists in the standard cubic case which reads as

F (ρ) = βρ2/2, (2.2)

and then f (ρ) = βρ , where β is the nonlinearity strength de-
scribing the interaction between atoms of the condensate. This
parameter is related to the s-scattering length (as) and is posi-
tive (respectively negative) for a repulsive (respectively attractive)

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
interaction. Other kinds of nonlinearities involve e.g. nonlocal non-
linear interactions like the dipole-dipole interaction [18,38–40,53].
For vortices creation, a rotating term is added. The vector � is
the angular velocity vector and the angular momentum is L =
(Lx, L y, Lz) = x ∧ P, with the momentum operator P = −i∇ . In
many situations, the angular velocity is such that � = (0, 0, ω)t

leading to

� · L = ωLz = −iω(x∂y − y∂x). (2.3)

A direct computation of the energy gradient yields

∇Etot(φ) = 2Hφφ, with Hφ = −1

2
� + V + f (|φ|2) − � · L

and the second-order derivative is
1

2
∇2Etot(φ)[u, u] = 〈

u,Hφu
〉 + Re

〈
f (φ2), u2

〉
.

Let us introduce S = {φ ∈ L2(Rd), ||φ||2 = 1} as the unit spherical
manifold associated to the normalization constraint. The tangent
space at a point φ ∈ S is given by TφS = {h ∈ L2(Rd), Re 〈φ,h〉 =
0}, and the orthogonal projection Mφ onto this space is such that
Mφh = h − Re 〈φ,h〉φ. Writing the Euler-Lagrange equation (first-
order necessary condition for the minimum) associated with our
problem at a minimum φ ∈ S requires that the projection of the
gradient on the tangent space S is zero, i.e. Mφ∇Etot(φ) = 0. This
equation is equivalent to the nonlinear eigenvalue problem

Hφφ = λφ,

where λ := λ(φ) = 〈
Hφφ,φ

〉
is the Lagrange multiplier associated

to the spherical constraint (also known as the chemical potential).

2.2. Pseudospectral spatial discretization

To find a numerical solution of the minimization problem,
the function φ ∈ L2(Rd) must be discretized carefully and ac-
curately, most particularly to describe fine details like the vor-
tex lattice structure that can appear. BEC2HPC considers a stan-
dard pseudo-spectral discretization scheme based on Fast Fourier
Transforms (FFTs) [18,22,23,27]. In 3D, we truncate the wave
function φ to a square domain [−ax, ax] × [−ay, ay] × [−az, az]
(ax , ay and az being positive), with periodic boundary condi-
tions, and discretize φ with an even number of nx , ny and nz

grid points in the respective x-, y- and z-directions. We describe
our scheme in 3D (the 2D case being then straightforward). For
M := (nx, ny, nz), we introduce a uniformly sampled grid: DM :=
{xk1,k2,k3 = (xk1 , yk2 , zk3)}(k1,k2,k3)∈OM , with OM := {0, . . . , nx −1} ×
{0, . . . , ny − 1} × {0, . . . , nz − 1}, xk1+1 − xk1 = hx , yk2+1 − yk2 = hy

and zk3+1 − zk3 = hz , with mesh sizes hx = 2ax/nx , hy = 2ay/ny

and hz = 2az/nz . By considering the N × N Hermitian matrix(-free)
operators from CN (N = nxnynz in 3D) to C given by ��� :=
�∂2

x � + �∂2
y� + �∂2

z � and �� · L� := −i� · (x ∧ �∇�), we obtain the
discretization of the gradient of the energy

(�∇�Etot)(φ) = 2�Hφ�φ,

with

�Hφ� := −1

2
��� + �V � + � f (|φ|2)� − �� · L�.

We set φ := (φ̃(xk1,k2,k3))(k1,k2,k3)∈OM (where φ̃ is the approxima-
tion of the function φ) as the discrete unknown vector in CN .
For conciseness, we identify an array φ in the vector space of 3D
complex-valued arrays Mnx,ny ,nz (C) (storage according to the 3D
3

grid) and the reshaped vector φ in CN . In addition, to simplify the
notations, we forget the brackets �A� and use A to designate the
matrix operator associated with a continuous operator A, based on
the FFT approximation. Finally, the cost for evaluating the applica-
tion of a 3D FFT is O(N log N).

For φ ∈CN , the total discrete energy Etot(φ) can be written as
the sum of the four elementary energies

Etot(φ) = Ekin(φ) + Epot(φ) + E int(φ) + Erot(φ), (2.4)

setting

Ekin(φ) := 1

2
||∇φ||22 = 1

2
〈∇φ,∇φ〉

= 1

2
(〈∂xφ, ∂xφ〉 + 〈∂yφ, ∂yφ〉 + 〈∂zφ, ∂zφ〉),

Epot(φ) := 〈V φ,φ〉, E int(φ) := 〈F (ρ),1〉,
Erot(φ) = −Re(〈� · Lφ,φ〉),

(2.5)

where 1 ∈ CN is the vector with components 1, and ||φ||2 is the
discretization of the L2(Rd)-norm on the uniform grid subject to
the discrete hermitian inner product 〈u, v〉 for two complex-valued
functions defined on the grid DM .

2.3. The Preconditioned Conjugate Gradient (PCG) method

Based on the pseudospectral discretization, we now need to
compute the solution to the finite-dimensional minimization prob-
lem under normalization constraint

φ ∈ arg min
φ∈CN ,‖φ‖2=1

Etot(φ). (2.6)

In BEC2HPC, we use the Preconditioned Conjugate Gradient (PCG)
method which differs from the preconditioned gradient method by
the following update rule for the descent method

dn = −P rn + βnpn−1, (2.7)

where P designates a well-designed preconditioner and the resid-
ual vector is rn := (Hφn

− λn I)φn . The vector φn is the iterate of φ
at step n for the minimization method (a preconditioned descent
algorithm would lead to the relation dn = −P rn). In addition, we
define pn = dn − Re

〈
dn,φn

〉
φn as the orthogonal projection of dn

onto the space generated by φn . The step βn is given by the Polak-
Ribière formula β = max(βPR, 0), setting

βPR = 〈rn − rn−1, P rn〉
〈rn−1, P rn−1〉 . (2.8)

We consider the standard choice β = max(βPR, 0), corresponding
to restarting by the CG method when βPR < 0. For the justifica-
tion of the CG method for constrained minimization, we refer to
[54,55]. The CG algorithm is then summarized in Algorithm 1. Con-
cerning the choice of θn , we take

θ
opt
n = −Re

〈
(∇Etot)(φn),pn

〉‖pn‖
Re

[
(∇2 Etot)(φn)[pn,pn] − λn

] , (2.9)

and use the same step size control as in the steepest descent al-
gorithm. In practice, these precautions for checking the descent di-
rection and using a stepsize control technique are important when
located in the neighborhood of a minimum. When a minimum is
approximately obtained, pn is always a descent direction and the
stepsize choice (2.9) decreases the energy functional. Finally, we
use the following robust stopping criterion (see [37])

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 1. Decomposition strategies for a 3D domain.
while not converged do
λn = λ(φn)

rn = (Hφn
− λn I)φn

βn = 〈rn − rn−1, P rn〉/〈rn−1, P rn−1〉
βn = max(βPR

n , 0)

dn = −P rn + βnpn−1

pn = dn − Re
〈
dn,φn

〉
φn

θn = arg minθ E
(
cos(θ)φn + sin(θ)pn/‖pn‖)

φn+1 = cos(θn)φn + sin(θn)pn/‖pn‖
n = n + 1

end

Algorithm 1: The Preconditioned Conjugate Gradient (PCG)
method as implemented in BEC2HPC.

En
err := |Etot(φn+1) − Etot(φn)| ≤ ε. (2.10)

This finally leads to the following PCG algorithm.
Let us now focus on the important question of building an effi-

cient and robust preconditioner P as a modification of the descent
direction, leading then to a closer point to the minimum

dn := −P (Hφn
− λn I)φn. (2.11)

The preconditioner should be an approximation of the inverse of
the Hessian matrix of the problem. A first preconditioner [37] uses
only the kinetic energy term through an adaptive preconditioner

Pn
� = (αn

� I − �/2)−1, (2.12)

where αn
� is a positive shifting constant defined by the character-

istic energy

αn
� = Ekin(φn) + Epot(φn) + E int(φn) > 0. (2.13)

This preconditioner provides a convergence independent of the
grid refinement and is diagonal in the Fourier space. Another nat-
ural approach is to use the diagonal preconditioner based on the
potential and nonlinear interaction terms

Pn
V = (αn

V I + V + f (|φn|2))−1, (2.14)

with αn
V = αn

� . This preconditioner is well-adapted to large non-
linearities and large domains. Finally, to get a stable performance
independent of the size of the domain or the spatial resolution, we
can define the combined preconditioners

Pn
C1

= Pn
V Pn

�, Pn
C2

= Pn
� Pn

V (2.15)

or a symmetrized version

Pn
C = Pn,1/2

V Pn
� Pn,1/2

V . (2.16)

Let us now analyze the computational cost of the PCG. The ap-
plication of the operator P V is almost free (since it only requires
a scaling of φ), but the naive application of P� requires a FFT/IFFT
4

pair. However, since we apply the preconditioners after and be-
fore an application of the Hamiltonian, we can reuse the FFT and
IFFT computations, so that the application of P� does not require
any additional Fourier transform. Similarly, the use of PC1 and PC2

only needs one additional Fourier transform per iteration, and that
of the symmetrized version PC two.

To summarize, the cost in terms of Fourier transforms per iter-
ation for the rotating GPE model is

• no preconditioner: 3 FFTs/iteration (get the Fourier transform of
φ, and two IFFTs to compute �φ and Lzφ respectively),

• P� or P V : 3 FFTs/iteration,
• non-symmetric combined PC1 or PC2 : 4 FFTs/iteration,
• symmetric combined PC: 5 FFTs/iteration.

Note that this total cost might be different for another type of GPE
model e.g. when a nonlocal dipole-dipole interaction is included
[18,53].

3. Implementation of the PCG method

In this section, we present an implementation of the previ-
ous PCG method for computing the stationary states of the GPE.
The resulting code, called BEC2HPC, is developed in C++ and uses
MPI communications for distributed computing. The code is avail-
able online at https://team .inria .fr /bec2hpc/. A Python interface is
provided for defining the physics of the problem and external visu-
alization tools such as Paraview can be used to exploit the results
of the simulations. The code takes advantage of existing HPC li-
braries and even if we focus here on the implementation of the
PCG methods, it can itself be leveraged to implement other spectral
methods or solve e.g. problems related to the dynamics of BECs. In
particular, schemes for simulating the dynamics of the GPE will be
included in a future version of BEC2HPC.

3.1. Implementation of FFT-based schemes in distributed memory

The wave function φ is truncated to a square domain with pe-
riodic boundary conditions and discretized on a grid with nx , ny ,
nz points along each dimension x, y and z, respectively. This grid
structure leads to multidimensional arrays on which we perform
one-dimensional discrete Fourier transforms along each dimen-
sion independently. For a 2D domain, we compute the transform
of each column and each row of a matrix to obtain [[∂x]] and
[[∂y]]. In distributed-memory, these arrays are divided among a
set of processes which each runs in their own memory address
space. Several libraries implement parallel FFT algorithms working
on distributed data. These codes use either 1D slab (FFTW [56]) or
2D pencil decompositions (PFFT [57], P3DFFT [58], 2DECOMP&FFT
[59]). The idea is to simply reuse serial FFT algorithms in local
memory. A 1D domain distribution along the dimension X (Fig. 1)

https://team.inria.fr/bec2hpc/

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
of a 3D domain allows to compute both [[∂y]] and [[∂z]] without
any interprocess communications as the grid elements involved in
the computation of each 1D FFT along the Y and Z lines are as-
signed to the same process. A permutation of the axis of the array
makes the computation along X local at the cost of all-to-all com-
munication to transpose the distributed array. A 2D pencil domain
decomposition only maintains the data placement useful for one
direction and requires transpositions for each of the other direc-
tions but it exhibits more parallelism as a 1D decomposition along
the dimension X is limited to using at most nx processes.

BEC2HPC is based on FFTW 3.3 (see [56]). We use the 1D block
distribution of the data (distributed along the first dimension), the
sequential FFT routine and the distributed transpose routine pro-
vided by the library. Using the FFTW’s advanced interface, one can
perform multiple sequential 1D complex FFT simultaneously on
non-contiguous data (fftw_plan_many_dft), allowing to com-
pute directly the FFTs along Y and Z on each process. The MPI
transpose routine used internally by FFTW for multidimensional
transforms is also exposed in its API (fftw_mpi_plan_many_
transpose for complex numbers) and is called directly for the
computation of [[∂x]]. FFTW comes with a set of routines for the
creation of the domain distribution (dividing the data among the
MPI processes), the allocation of memory (with due considera-
tion to alignment for SIMD instructions and the extra memory
that might be needed for a data redistribution). Computation of
a Fourier transform is preceded by a preprocessing phase selecting
at runtime an efficient strategy for computing a transform on the
current hardware: it creates a plan (an opaque data type) describ-
ing the algorithm and transforms can then be executed repeatedly.

3.2. BEC2HPC parallel code design

Building FFT-based schemes on the foundation of FFTW is a
good starting point as this library is fast, freely available and be-
came defacto standard for scientific softwares or for benchmarking
other FFT libraries. In addition, other FFT libraries such as the Intel
Math Kernel Library (MKL) offers FFTW interfaces without chang-
ing the program source code. NVIDIA also provides FFTW interfaces
to the cuFFT library. However, it seems important to integrate in
the initial design more general data distributions as well as the
possibilities of using hybrid MPI-plus-thread approach in the fu-
ture. On multicore clusters, OpenMP directives can be used to
distribute the set of serial 1D FFT to be performed within a MPI
process. Multi-threaded FFT algorithms can also replace serial FFT
to leverage parallelism along a second dimension as FFTW provides
multi-threaded transforms with exactly the same API as the serial
version.

Currently, BEC2HPC only uses FFTW but we avoided binding the
code directly to this third-party library. FFTW’s routine calls and
data types are encapsulated and BEC2HPC defines its own interface
for data distribution, transforms and transposition. In BEC2HPC, the
data distribution is described by a Map object taking up ideas of
well established parallel scientific libraries [60]. Map objects con-
tain the details of the block distribution along each dimension (in-
cluding domain dimensions, local and global partitioning indices)
and distributed objects are subsequently created from Map objects.
The distributed arrays class gives methods for creating multidi-
mensional arrays, accessing local array elements. It also provides
foreach loops for performing pointwise operations for each domain
element and parallel reduce using C++11 lambda. It hides much of
the complexity of the data distribution and facilitates the applica-
tion of operators and the computation of norms and convergence
criteria. As a result, the grid distribution, the local indices and MPI
routine do not appear on the implementation of the PCG algo-
rithm, improving the code readability. These classes also provide
a high-level parallel abstraction layer that can evolve to support
5

different memory layout and programming paradigm for multicore
processors.

The spectral numerical method itself is implemented on top of
this using a modular design to ease the change of components
such as preconditioners or stopping criterias as described in Sec-
tion 2. At each iteration, transforms are never computed twice and
operators such as [[�]] or [[Lz]] are stored along side φn to be
used on each components.

4. Getting started with BEC2HPC

This section proposes a first BEC2HPC example and shows off
the basics usage of BEC2HPC. BEC2HPC provides both a C++ and
python interfaces. In this paper, we present the Python interface
built using the Boost Python Library, a framework for exposing the
C++ classes functions and objects to Python.

4.1. Installation

The build process of BEC2HPC is managed by CMake and re-
quires a C++11 compiler, a MPI library and several external li-
braries compiled with parallel support (namely Boost, FFTW and
HDF5). Python3 is also needed for running most of the exam-
ples. These softwares are usually pre-installed on HPC machines.
We also provide a Vagrant setup to automatically configure a vir-
tual computing environment suitable for compiling and running
BEC2HPC on personal computers. Vagrant [61] is a popular tool
for building virtual machines (or containers) from a configuration
file describing the machine setup and the necessary steps to create
a ready-to-use machine. The virtual machine behaves like a sepa-
rate computer system and can be accessed via a SSH connection
as if it was a remote physical machine. Fig. 2 shows how to cre-
ate a Vagrant managed virtual machine for BEC2HPC. Within the
virtual machine, the bec2hpc directory is shared with the host
and therefore contains the source code. build is an out-of-source
build directory to keep separate the files generated by the compi-
lation.

4.2. A first example

Let us consider the physical problem governed by the following
GPE

i∂tψ(x, t) = (−1

2
� + V (x) + β|ψ(x, t)|2 − � · L)ψ(x, t),

(x, t) ∈Rd ×R∗+,

(4.17)

where V (x) is the external confining potential, β is the nonlin-
earity strength describing the interaction between atoms of the
condensate, � is the angular velocity vector and L is the angu-
lar momentum operator. By default in BEC2HPC, the rotation term
is such that � · L = ωLz = −iω(x∂y − y∂x) (i.e. � = (0, 0, ω)t), and
the nonlinearity is cubic, i.e. f (|ψ |) = β|ψ |2. The harmonic poten-
tial V is given by

V (x, y, z) = 1

2
(γ 2

x x2 + γ 2
y y2 + γ 2

z z2), (4.18)

with γx = γy = γz = 1 per default in 3D, and γx = γy = 1, γz = 0
in 2D. The predefined initial guess is the Thomas-Fermi approxi-
mation

φ0 = φTG
β

||φTG
β ||2

, with φTG
β =

⎧⎪⎨
⎪⎩

√
μTG

β − V (x)

β
, if μTG

β > V (x),

0, otherwise,

(4.19)

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 2. Creating a Vagrant managed Virtual Machine (VM) for BEC2HPC.

Fig. 3. A first example.
where the eigenvalue approximation μTG
β is given by

μTG
β = 1

2

{
(4βγxγy/π)1/2, d = 2,

(
15

4π
βγxγyγz)

2/5, d = 3.

The stopping criterion is fixed by default to En
err := |Etot(φn+1) −

Etot(φn)| ≤ ε, with ε = 10−12.
We consider now that we want to compute the ground state

of a 2D rotating condensate with a cubic nonlinearity and a har-
monic potential (setting γx = γy = 1, γz = 0). Fig. 3 shows a
first example of the BEC2HPC API. The computational domain
and spatial mesh sizes are chosen respectively as [−16, 16]2 and
h = 1

4 (M = 128). This example can be run within the virtual ma-
chine with mpiexec -n 1 python simple-example.py.
The physics and solver parameters are listed in two distinct
python hashmaps. The physics submodule can be used to gen-
erate the initial guess. The pcg method returns the solution
solver_phi_n along with information about the solver exe-
cution in a hashmap stats. This includes in particular the en-
ergy at the final state, the convergence history and the compu-
tational time to reach the stationary state (Fig. 4). The solution
solver_phi_n can be saved in a HDF5 file as shown in Fig. 5.
HDF5 [62] is a widely-used standard binary format for storing
numerical data and BEC2HPC uses the Parallel HDF5 library to ef-
ficiently write on disk in a parallel environment (using MPI-I/O).
The solution can later be postprocessed or visualized with a va-
6

riety of tools such as Python or Paraview (see also Section 5.3).
The solution can also be transferred to a single processor by using
local_phi = solver.array.gather(phi). For instance, it
can be used to plot phi_n without saving it to a file. Fig. 6 shows
how to load a HDF5 file and plot the density function ρ = |φ|2
in Python. The provided function bec2hpc.utils.plot2d uses
matplotlib internally. Fig. 7 shows the square of the amplitude of
the wave function on the computational domain for ω = 0.5 and
β = 500. The stats output of solver.pcg can be saved as a
JSON file (or in any human-readable format) along side the input
parameters to retain the information of a simulation run.

5. BEC2HPC advanced usage

After this step-by-step example on a model problem, we now
describe in more details some of the code functionalities for defin-
ing the physical problem and the numerical scheme. We also
present along the way how to manage the distributed data struc-
tures efficiently in Python.

5.1. Defining the initial data

The iterative method for computing the solution of the mini-
mization problem needs to be initialized with a guess. As the min-
imization algorithm is a local optimization procedure, the choice
of the initial guess can lead to a local minimum and therefore a

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
Fig. 4. Output of the solver.pcg function in a JSON format.

Fig. 5. Saving the ouput of the solver.pcg function.

different final converged state [37]. The initial guess is usually an
approximation of the solution of a simpler problem and BEC2HPC
provides initial data typically found in the literature such as a
centered Gaussian for fast rotations or the Thomas-Fermi approx-
imations (4.19) for strong nonlinear interactions [18,36,37]. In 2D,
the centered Gaussian is defined by

φ(x) = (1 − ω)φa(x) + ωφb(x)

||(1 − ω)φa(x) + ωφb(x)|| , (5.20)

where

φa(x) = 1√
π

e−(γxx2+γy y2)/2, φb(x) = (γxx + iγy y)φa(x).

(5.21)

It is also possible to provide your own initial guess to the pcg
method once you become familiar with the BEC2HPC distributed
array class. Fig. 8 shows how to implement the Gaussian defined
7

Fig. 6. Compute and plot the density function |φ|2.

Fig. 7. Density function |φ|2 of the ground state.

by (5.20) for γx = γy = 1 and ω = 0, a simple choice for weak
nonlinear interaction and subcritical frequencies.

In Python, the elements of a DistributedArray are acces-
sible as a numpy array by using the getData() method. This
method returns a numpy array containing the local part of the dis-
tributed array without making a copy of the underlying data. The
numpy array is actually a view of the original data and modifying
the numpy array changes the distributed array (and vice versa).
The data distribution of an array is described by a Map object and
can be retrieved using the getMap() method on the array. The
python ellipsis syntax (‘...’) is used to assign the result of the
calculation to the original numpy array memory buffer (otherwise,
with a simple array assignment, phi_0 would not be referencing
the BEC2HPC array anymore).

5.2. Defining the trapping potential

BEC2HPC comes with predefined potential functions for an har-
monic trap (4.18) and other potentials with added potential terms
such as the harmonic-plus-quartic potential

V (x) = (1 − α)
∑

ν=x,y

γνν
2 + κ (x2 + y2)2

4

{ +0, d = 2,

+γ 2
z z2, d = 3.

(5.22)

Fig. 9 shows how to provide a user-defined potential in Python.
Either Python function or a lambda form could be specified on

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 8. Defining a initial guess.

Fig. 9. User-specified potentials.
the parameter list describing the physics of the problem. One can
also implement its own C++ potential class by deriving the C++
Potential abstract class and instantiating it in Python. On the
same model, it is possible to redefine the nonlinearity part of the
equation as well as the stopping criteria and the preconditioner to
be used during the nonlinear conjugate gradient.

5.3. 3D simulation and visualization

The previous examples were in 2D for conciseness but BEC2HPC
has been designed with large 3D problems in mind. For code main-
tenance purpose, 2D and 3D cases share the same code base inter-
nally (there is no code duplication). The functions described in 2D
in this paper are all available in 3D as well. Running a 3D simu-
8

lation only requires to define the computational boundary and the
number of grid points in the third dimension (by adding Lz and
nz in the physics parameter list).

3D visualizations of large problems might be more tricky but
thankfully, specialized applications such as ParaView can be lever-
aged [63]. ParaView cannot read directly a HDF5 file as it needs
information concerning the semantic of the data. Such informa-
tion can be provided by a simple XDMF file describing the data
scheme. XDMF (eXtensible Data Model and Format) uses XML
to store metadata and refers to external HDF5 files for the val-
ues themselves. It is a standard way format to describe the raw
data produced by HPC codes and BEC2HPC provides a function
bec2hpc.utils.save_xdmf(phi_n, ’phi_n.xdmf’) to
create a XDMF describing the semantic of a BEC2HPC HDF5 output

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
created with the call bec2hpc.utils.save_hdf5(phi_n,
’phi_n.hdf5).

The ParaView Python API gives full access to its data analysis
and visualization capabilities. It can be used to programmatically
visualize the result of a BEC2HPC simulation. When running multi-
ple tests, it might be handy to define a visualization with the Par-
aView application, save the visualization state and then reload it
from Python. An example to load a ParaView state file (a file with
a .pvsm extension) is available in the examples/paraview di-
rectory of BEC2HPC.

5.4. Grid manipulation

In order to both limit the number of iterations and reach the
lowest energy state, the initial guess of a simulation must be cho-
sen close to the expected solution. Several choices for an initial
guess are described in subsection 5.1. Another approach to define
an initial guess is to use the results of a previous simulation. It
can give good results when the simulation parameters varies only
slightly or when we make them gradually changing. For large grid
sizes, one can use the results of the same simulation performed on
coarser grid involving less points. It is also possible to tune the size
of the domains once we learned on a fastest, less accurate simu-
lation the space occupied by the condensate for a given rotational
speed and potential.

The mapping of a coarse grid data on a finer grid is done using
an interpolation. Fig. 10 gives an example for linearly interpolating
a 2D grid in Python. In this example, the coarse grid solution is
simply gathered on a single processor and the interpolation is done
in sequential using the interpolate.interpn function of the
SciPy library. This process can be repeated on several grid levels to
form the hierarchical multigrid strategy presented in [36,37] and
implemented with BEC2HPC in Fig. 11. The ground state compu-
tation begins on a coarse grid of 2Ncoarse × 2Ncoarse points and the
grid is successively refined until a finest grid with 2Nfine × 2Nfine .
The stopping criteria can be relaxed for the coarse grids as shown
in the example.

Nevertheless, strategies based on simple continuation or multi-
grid strategies should be used carefully since they can also some-
times provide intermediate or final solutions which are not correct.
More advanced algorithms [20,30,64] should probably be consid-
ered to obtain fast and robust methods.

6. Numerical examples

6.1. Experimental setup

In this section, we present some results obtained from simula-
tions with BEC2HPC in 2D/3D for fast rotating BECs on a parallel
cluster. Let us remark that the aim of the paper is not to compare
BEC2HPC to other solvers. Nevertheless, it would be interesting to
have some fair comparisons between codes, and in particular with
[47,51] where efficient solutions for simulating rotating BECs are
given. Let us also recall that, from [37], it is already stated that the
PCG is much more efficient than an optimized normalized gradient
flow/imaginary time method with pseudospectral approximation.
Experiments were conducted on NIC4, a massively parallel cluster
of the University of Liège, installed in the framework of the Bel-
gium consortium of HPC centers (CÉCI) and funded by F.R.S.-FNRS
under Grant No. 2.5020.11. It features nodes with two 8-cores Intel
E5-2650 processors at 2.0 GHz and 64 GB of RAM (4 GB/core), in-
terconnected with a QDR Infiniband network. We focus here on the
strong scaling (how the solution time varies with the number of
processors for a fixed total problem size) and reach indeed a limit
where each MPI processes does not have much computing work
to do. The scalability problem that occurs with very small problem
9

sizes per processor by using hybrid MPI/OpenMP optimization will
be addressed in the future.

In the following examples, we consider the cubic nonlinearity
and the harmonic-plus-quartic potential (5.22), with γx = γy = 1,
α = 1.2 and κ = 0.3. In 3D, we fix γz = 3. This potential leads to
the existence of stationary states for highly rotating BECs for val-
ues ω larger than one, unlike the standard harmonic potential case.
We initialize the PCG method with the Thomas-Fermi ansatz (4.19)
presented in Section 4.2. We only report the results obtained with
the symmetrical version of the combined preconditioner (2.16) as
it outperforms the other tested preconditioners. For the stopping
criterion, we use En

err := |E(φn+1) − E(φn)| ≤ ε which is well suited
for rotating BECs (to include the non-uniqueness of the minimum
up to a rotation). Let us note here that all the computations pre-
sented here were already checked in [37] and therefore represent
some stationary states, which are expected to be some the ground
state of the problem under study. However, the PCG remains a lo-
cal minimization algorithm (similarly to imaginary time methods)
and therefore the iterated solution may converge to a local min-
imizer which is a not the ground state (see also [37] for explicit
examples). This is a fundamental limit of the local optimization
techniques under constraint. In the future, improvements of these
local methods should be developed to have more robust solutions
for the most complex cases. In particular, let us mention that two
initial guess may lead to two different solutions with very close
total energies.

The experiments presented here were carried out for a wide
range of rotation speeds and nonlinearity strengths. The strong
scaling of the code is also tested by running the same exper-
iments with an increasing number of MPI processes. To facili-
tate the testing when several parameters need to vary and to
run the solver several times, we provide an easy way to gen-
erate and launch a set of experiments. These scripts are in-
cluded in the example directory of the BEC2HPC distribution.
Fig. 12 shows how to generate input parameters lists describ-
ing the physics for each combination of ω and β where ω ∈
{1, ..., 4.5} and β ∈ {1000, 5000, 10000}. The Python dictionary
physics_params_set includes a description of the parameters
range for ω and β . utils.extend_params generates all possi-
ble combinations of the given input parameters for the pcg func-
tion. In this example, each parameters list is saved in its own JSON
file and the utility function gen_id generates a string to name the
experiments (for example, 2D__L_20__n_640__Omega_1__
Beta_1000.json). These JSON files can then be used to run
BEC2HPC as shown in Fig. 13. This last script takes a list of JSON
files as input parameter and can be used within a submission
script for a job scheduler on a HPC machine.

6.2. Numerical results in 2D

In 2D, the computational domain and mesh sizes are cho-
sen respectively as [−20, 20]2 and h = 1

16 (M = 640). Concerning
the stopping criterion, the tolerance is set to ε = 10−14. Fig. 14
shows the converged stationary states computed by BEC2HPC for
β = 1000 and different rotation speeds. We also provide the value
of the chemical potential λ for each case. By increasing the rotation
velocity, the Bose-Einstein condensate expands into a ring shaped
BEC with an increasing central radius. In particular, for ω = 5,
we get a thin ring with one layer of uniformly spaced vortices.
Fig. 15 shows additional results for a larger nonlinearity strength,
i.e. β = 10000, showing that more vortices characterize the BEC for
larger values of β .

In Table 1, the number of MPI processes is fixed to n = 32.
We compare the CPU times (in seconds) needed to have the PCG
method converging, for various values of ω and β . The CPU time
is directly related to the number of iterations #it. In particular,

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 10. Coarse grid interpolation.
higher rotation speeds ω and stronger nonlinearities β usually re-
quire more iterations (and so more simulation times) but it is not
always the case. Using a stopping criteria based on the energy
difference is advantageous to avoid situations where the residual
evolves without changing the energy.
10
Table 2 presents the number of iterations #it and the CPU time
required to compute the ground state for β = 1000 and different
numbers of MPI processes. This shows how the computational time
scales with the number of MPI processes. Running the computa-
tion on 32 cores is 15-20 times faster than on a single core. The

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 11. A multigrid approach for defining the initial guess.

Fig. 12. Generating a JSON file for each combination of the parameters ω and β .
scalability results are consistent with the scalability of the 2D FFT
algorithm in distributed memory. The number of iterations varies
slightly with the number of processors but the same final state
is nonetheless reached independently of the number of MPI pro-
cesses.
11
Finally, Table 3 shows the resolution of a very difficult 2D prob-
lem (β = 10000, ω = 5) on a finer grid (M = 2048) using 32 and
128 processors. A fast and precise resolution of such challenging
problems is only possible thanks to the robustness of the numeri-
cal method and its parallel implementation.

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 13. Running BEC2HPC using JSON files as the description of the physical setups.

Fig. 14. Contour plots of the density function |φg |2, for β = 1000 (procs = 32).

Table 1
CPUs time (seconds) to compute the ground states of the GPE for various values of ω and β (procs = 32).

β ω = 1 1.5 2 2.5 3 3.5 4 4.5

1000 57.79 53.48 91.28 123.36 132.23 173.64 158.41 357.56
5000 97.66 387.07 352.27 685.75 329.34 254.04 253.72 4823.42
10000 489.68 1104.76 1279.08 562.53 960.99 1170.01 3164.85 5603.2
12

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 15. Contour plots of the density function |φg |2, for β = 10000 (procs = 32).

Table 2
2D scalability tests.

it time (s) speedup

1 951 1219.50 1.00
2 888 605.14 2.02
4 891 310.98 3.92
8 886 163.42 7.46
16 914 96.76 12.6
32 876 57.79 21.1

(a) β = 1000,ω = 1

it time (s) speedup

1 1390 1768.86 1.00
2 1411 992.01 1.78
4 1362 488.91 3.62
8 1378 255.94 6.91
16 1347 146.16 12.10
32 1377 91.28 19.38

(b) β = 1000,ω = 2

it time (s) speedup

1 1518 1965.75 1.00
2 1888 1312.84 1.50
4 1805 650.94 3.02
8 1850 344.82 5.70
16 1791 192.15 10.23
32 1839 123.36 15.94

(c) β = 1000,ω = 2.5

it time (s) speedup

1 7746 9976.62 1.00
2 6434 4455.09 2.24
4 7298 2631.25 3.79
8 7246 1355.25 7.36
16 7292 796.05 12.53
32 7387 498.40 20.02

(d) β = 1000,ω = 5
Table 3
Ground states of the GPE for β = 10000, ω = 5, M = 2048.

it time speedup

32 18105 10971.45 s 3 hrs 1.0
128 18560 3973.70 s 66 min 2.76

6.3. Numerical results in 3D

We solve now various 3D problems. The computational domain
is [−8, 8]3 and the tolerance of the stopping criterion is set to
ε = 10−12. Fig. 16 presents the results of four experiments for
13
the mesh size h = 1
8 (M = 128). 3D simulations allow to visual-

ize the torus shape of the BEC as well as the vortices lines. The
scalability results presented in Table 4 are again consistent with
the scalability of the 3D FFT algorithm and the cost of parallel
transpose algorithms. Running on 32 cores can be more than 5
times faster than on 4 cores but the speedup is reduced when
the number of iterations increases unfavorably. According to our
experiments, this instability in the number of iterations occurs
when the grid resolution is not fine enough. Fig. 17 and Table 5
present the results of the same experiments on a finer grid with
h = 1

16 (M = 256) for 32 and up to 256 cores. By refining the
grids, each iteration is more costly in computational time and the

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 16. Isosurface |φg |2 = 10−3.

Table 4
3D scalability tests (M = 128). The computational domain is [−8, 8]3, h = 1

8 (M = 128), ε = 10−12.

it time (s) speedup

4 753 1479.90 1.00
8 756 780.97 1.89
16 755 437.01 3.39
32 755 264.64 5.59

(a) β = 100,ω = 1.4

it time (s) speedup

4 514 1057.14 1.00
8 515 537.19 1.97
16 515 292.62 3.61
32 517 177.69 5.95

(b) β = 100,ω = 1.8

it time (s) speedup

4 3632 7019.09 1.00
8 3713 3801.36 1.85
16 3907 2263.74 3.1
32 4257 2409.29 2.91

(c) β = 5000,ω = 3

it time (s) speedup

4 6512 13091.23 1.00
8 6602 6843.93 1.91
16 7450 4352.26 3.01
32 7656 3411.37 3.84

(d) β = 10000,ω = 3
resolution also takes more iterations. The computations become
rapidly expensive. For example, on this finer grid, more than 3
hours are needed to solve the β = 10000, ω = 3 test case on 256
processors.

7. Conclusion

In this paper, we presented BEC2HPC which is a parallel solver
for computing the stationary states of the rotating Gross-Pitaevskii
equation for the modeling of 2D/3D Bose-Einstein condensates. The
scheme implemented in BEC2HPC is based on a preconditioned
conjugate gradient for the minimization of the energy functional
under normalization constraint, combined with a pseudo-spectral
14
approximation scheme in space (using FFT). This leads to an effi-
cient and robust code for complex problems, that can also be used
for problems related to the nonlinear Schrödinger equation. After
a presentation of the implementation aspects, we explain how to
use the code on a first 2D example. More complicate 2D and 3D
test cases are presented next to illustrate some specific coding as-
pects of the code and to show the scalability of the code for larger
problems.

Future developments of BEC2HPC concern the possibility of
simulating the dynamics of the rotating GPE by various schemes,
the extension to systems of GPE (stationary states and dynamics)
and the possibility to simulate nonlocal nonlinear effects like for
example for the case of dipole-dipole interactions.

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007

Fig. 17. 3D color map of |φg |2.

Table 5
3D scalability tests (M = 256). Domain is [−8, 8]3, h = 1

16 (M = 256), ε = 10−12.

it time (s) speedup

32 1609 4541.32 1.00
64 1617 2731.90 1.66
128 1611 2173.89 2.09
256 1611 839.60 5.41

(a) β = 100,ω = 1.4

it time (s) speedup

32 1986 5404.94 1.00
64 2025 3300.06 1.64
128 2028 2366.42 2.28
256 2035 1215.22 4.45

(b) β = 100,ω = 1.8

it time (s) speedup

32 4071 11158.37 1.00
64 4266 7170.47 1.56
128 4330 5832.11 1.91
256 4340 2335.89 4.78

(c) β = 5000,ω = 3

it time (s) speedup

256 22075 12153.14 1.0

(d) β = 10000,ω = 3
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors acknowledge the support from the Inria asso-
ciate team BEC2HPC (Bose-Einstein Condensates: Computation and
HPC simulation (https://team .inria .fr /bec2hpc/)). Q. Tang also ac-
knowledges the support from the National Natural Science Founda-
tion of China (No. 11971335). Computational resources have been
provided by the Consortium des Équipements de Calcul Intensif
15
(CÉCI), funded by the Fonds de la Recherche Scientifique de Bel-
gique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon
Region.

References

[1] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science
269 (5221) (JUL 14 1995) 198–201.

[2] C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75 (9) (AUG 28
1995) 1687–1690.

[3] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (3) (APR
1999) 463–512.

[4] K.B. David, M.O. Mewes, M.R. Andrews, N.J. Vandruten, D.S. Durfee, D.M. Kurn,
W. Ketterle, Phys. Rev. Lett. 75 (22) (NOV 27 1995) 3969–3973.

[5] T. Byrnes, K. Wen, Y. Yamamoto, Phys. Rev. A 85 (4) (2012).

https://team.inria.fr/bec2hpc/
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE9D506F7D55ADA3FBD395243FF076472s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE9D506F7D55ADA3FBD395243FF076472s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibAE892BE7A70D647DB606A981BA61EF56s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibAE892BE7A70D647DB606A981BA61EF56s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib16528B6716F028AEDD52BF075984A97Es1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib16528B6716F028AEDD52BF075984A97Es1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibDBC1EB1972E682B79C53EF90D42BD4A7s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibDBC1EB1972E682B79C53EF90D42BD4A7s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibB9E2EF422E95D76C4E159B3A9820B99Es1

J. Gaidamour, Q. Tang and X. Antoine Computer Physics Communications 265 (2021) 108007
[6] J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292 (5516) (APR 20
2001) 476–479.

[7] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92 (5) (FEB 6 2004).
[8] K.W. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 86 (20) (MAY 14

2001) 4443–4446.
[9] K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84 (5) (JAN

31 2000) 806–809.
[10] M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell,

Phys. Rev. Lett. 83 (13) (SEP 27 1999) 2498–2501.
[11] C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu, W. Ketterle, Phys. Rev. Lett.

87 (21) (NOV 19 2001).
[12] C. Yuce, Z. Oztas, J. Phys. B, At. Mol. Opt. Phys. 43 (13) (JUL 14 2010).
[13] W. Bao, Y. Cai, Kinet. Relat. Models 6 (1) (MAR 2013) 1–135.
[14] W. Bao, Y. Cai, H. Wang, J. Comput. Phys. 229 (20) (2010) 7874–7892.
[15] W. Bao, Multiscale Model. Simul. SIAM Interdis. J. 2 (2) (2004) 210–236.
[16] W. Bao, Y. Cai, East Asian J. Appl. Math. 1 (2011) 49–81.
[17] X. Antoine, W. Bao, C. Besse, Comput. Phys. Commun. 184 (12) (2013)

2621–2633.
[18] X. Antoine, R. Duboscq, in: C. Besse, J.C. Garreau (Eds.), Nonlinear Optical and

Atomic Systems: at the Interface of Physics and Mathematics, in: Lecture Notes
in Mathematics, vol. 2146, 2015, pp. 49–145.

[19] A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71 (Jan 2005) 013605.
[20] B.-W. Jeng, Y.-S. Wang, C.-S. Chien, Comput. Phys. Commun. 184 (3) (2013)

493–508.
[21] S.K. Adhikari, Phys. Lett. A 265 (JAN 17 2000) 91–96.
[22] X. Antoine, R. Duboscq, J. Comput. Phys. 258 (2014) 509–523.
[23] W. Bao, Q. Du, SIAM J. Sci. Comput. 25 (5) (2004) 1674–1697.
[24] D. Baye, J.M. Sparenberg, Phy. Rev. E 82 (5) (Nov 1 2010).
[25] M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, M.P. Tosi, Phys. Rev. E 62 (1)

(JUL 2000) 1382–1389.
[26] M.L. Chiofalo, S. Succi, M.P. Tosi, Phys. Rev. E 62 (5) (NOV 2000) 7438–7444.
[27] R. Zeng, Y. Zhang, Comput. Phys. Commun. 180 (6) (JUN 2009) 854–860.
[28] X. Antoine, R. Duboscq, Comput. Phys. Commun. 185 (11) (2014) 2969–2991.
[29] C.M. Dion, E. Cances, Comput. Phys. Commun. 177 (10) (NOV 15 2007)

787–798.
[30] Y.-S. Wang, B.-W. Jeng, C.-S. Chien, Commun. Comput. Phys. 13 (2013) 442–460.
[31] W. Bao, W. Tang, J. Comput. Phys. 187 (1) (MAY 1 2003) 230–254.
[32] M. Caliari, A. Ostermann, S. Rainer, M. Thalhammer, J. Comput. Phys. 228 (2)

(FEB 1 2009) 349–360.
[33] I. Danaila, F. Hecht, J. Comput. Phys. 229 (19) (SEP 20 2010) 6946–6960.
[34] I. Danaila, P. Kazemi, SIAM J. Sci. Comput. 32 (5) (2010) 2447–2467.
[35] I. Danaila, B. Protas, SIAM J. Sci. Comput. 39 (6) (2017) B1102–B1129.
[36] X. Wu, Z. Wen, W. Bao, J. Sci. Comput. 73 (2017) 303–329.

[37] X. Antoine, A. Levitt, Q. Tang, J. Comput. Phys. 343 (2017) 92–109.
[38] X. Antoine, Q. Tang, Y. Zhang, Commun. Comput. Phys. 24 (4) (2018) 966–988.
[39] X. Antoine, Q. Tang, J. Zhang, Int. J. Comput. Math. 95 (6–7) (2018) 1423–1443.
[40] X. Antoine, Q. Tang, Y. Zhang, J. Comput. Phys. 325 (2016) 74–97.
[41] R.K. Kumar, L.E. Young-S, D. Vudragović, A. Balaz̆, P. Muruganandam, Comput.

Phys. Commun. 195 (9) (2015) 117–128.
[42] P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180 (10) (2009)

1888–1912.
[43] D. Vudragović, I. Vidanović, A. Balaz̆, P. Muruganandam, S.K. Adhikari, Comput.

Phys. Commun. 183 (9) (2012) 2021–2025.
[44] V. Lonc̆ar, L.E. Young-S, P. Muruganandam, S.K. Adhikari, A. Balaz̆, Comput. Phys.

Commun. 209 (2016) 190–196.
[45] B. Sataric̆, V. Slavnic̆, A. Balac̆, A. Belic̆, P. Muruganandam, S.K. Adhikari, Com-

put. Phys. Commun. 200 (2016) 411–417.
[46] L.E. Young-S, P. Muruganandam, S.K. Adhikari, V. Lonc̆ar, D. Vudragović, A.

Balaz̆, Comput. Phys. Commun. 220 (2017) 503–506.
[47] R. Kishor Kumar, V. Lonc̆ar, P. Muruganandam, S.K. Adhikari, A. Balaz̆, Comput.

Phys. Commun. 240 (2019) 74–82.
[48] U. Hohenester, Comput. Phys. Commun. 185 (1) (2014) 194–216.
[49] R.M. Caplan, Comput. Phys. Commun. 184 (4) (2013) 1250–1271.
[50] Z. Marojević, E. Göklö, C. Lämmerzahl, Comput. Phys. Commun. 202 (2016)

216–232.
[51] G. Vergez, I. Danaila, S. Auliac, F. Hecht, Comput. Phys. Commun. 209 (2016)

144–162.
[52] X. Antoine, R. Duboscq, Comput. Phys. Commun. 193 (2015) 95–117.
[53] W. Bao, S. Jiang, Q. Tang, Y. Zhang, J. Comput. Phys. 296 (2015) 72–89.
[54] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Mani-

folds, Princeton University Press, 2009.
[55] A. Edelman, T.A. Arias, S.T. Smith, SIAM J. Matrix Anal. Appl. 20 (2) (1998)

303–353.
[56] M. Frigo, S.G. Johnson, Proc. IEEE 93 (2) (2005) 216–231, Special issue on “Pro-

gram Generation, Optimization, and Platform Adaptation”.
[57] M. Pippig, SIAM J. Sci. Comput. 35 (3) (2013) C213–C236.
[58] D. Pekurovsky, P3DFFT: a framework for parallel computations of Fourier trans-

forms in three dimensions, CoRR, arXiv:1905 .02803 [abs], 2019.
[59] N. Li, S. Laizet, 2DECOMP & FFT - a highly scalable 2D decomposition library

and FFT interface, 2010.
[60] The Epetra Project Team, The Epetra Project website, https://trilinos .github .io /

epetra .html, 2020.
[61] HashiCorp, Vagrant, https://www.vagrantup .com/, 2010.
[62] HDF Group, et al., HDF5 users guide, http://www.hdfgroup .org /HDF5, 2012.
[63] J. Ahrens, B. Geveci, C. Law, in: The Visualization Handbook, 2005, p. 717.
[64] Y.-S. Wang, C.-S. Chien, J. Comput. Appl. Math. 235 (8) (2011) 2740–2757.
16

http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9F2FF000B09C6E77F14BE53361EC75D2s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9F2FF000B09C6E77F14BE53361EC75D2s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib072F69F4BD1D069C6B47350CBD900C41s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib28C4EDC8116076F729F417BDFEE7865Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib28C4EDC8116076F729F417BDFEE7865Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC63487B2D236A7AC4C9F11E3023CE70Fs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC63487B2D236A7AC4C9F11E3023CE70Fs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib93E7A5785492D160D1F34B30D35D7434s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib93E7A5785492D160D1F34B30D35D7434s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib7B5769CC36CE3C95573658629CD1155Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib7B5769CC36CE3C95573658629CD1155Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib51069BF8B4634D691D60E9E30D2E81F9s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib7D3BD69D04E592AF6919DB00A5AE6570s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib94B572A76859966FE39D1DF1F9C8F4EBs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib86B545C466DCD0194A2E4A824FFF2700s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA39D7F74714C4AC072410DD50CBC67C3s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA5CA709F4459466CB8A3AB2AF190A7C6s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA5CA709F4459466CB8A3AB2AF190A7C6s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9D3246C89C55792E8B4A8EB2E5AB1796s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9D3246C89C55792E8B4A8EB2E5AB1796s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9D3246C89C55792E8B4A8EB2E5AB1796s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib89E76CAD28C7A913BE557A21AD8F53CEs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibF5EB938F3D7A379D95EF1163FB26DFDDs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibF5EB938F3D7A379D95EF1163FB26DFDDs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib7E30E4248CC48D9CAF09BF9266E2C84As1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE0E1EC17FB7260FD49808B00F223A75Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC4F075184B4DA1199A0713AEFD2C2E41s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib192E78869D015C54049127C327E786A4s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib94D894BDFFC609B39CD144A8627DDE5As1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib94D894BDFFC609B39CD144A8627DDE5As1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib0456DF6AB8FDAAC2EEF0B306052C6C89s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib4D6228535A6E267D3E63EB302E491B25s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibD426DB31AEBBFF4EF73836D785A58CFBs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib8BA0C75583950F308DB3ECD309E972BAs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib8BA0C75583950F308DB3ECD309E972BAs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibB3FB842387AC9C85E3FBE9843E61A207s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib3A2E8A981AA77050D3D084867801C14Bs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9162320F0B58C77E059F8A1623A7A8F5s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib9162320F0B58C77E059F8A1623A7A8F5s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib5A7F748F10BAE40BDF472A61126999BBs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibD10C662DBEAF2538F0E0B3E8516C1C4Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib2BB571C358157AEB0A22119E63CCF5D1s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibD8D3121C45BA56CF708DE668DEA5C4D2s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibDFBFC9CC7A235560F04CB1A5FAF1EC3Es1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE8A511E3607F1B3643AAD988ABEBAAC6s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibF7DA592F8CED9A7F0A76039C7ABCBB45s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib2DFF79FBAC4096CF57EC1CA9131EB299s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib94EBBD489C1B88E8E55B69CD74744A7As1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib94EBBD489C1B88E8E55B69CD74744A7As1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib54BBBC03F53E193F5AA68BD60A7FA1A4s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib54BBBC03F53E193F5AA68BD60A7FA1A4s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib67A0AAF1DEF9419DBD10216F9337431Cs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib67A0AAF1DEF9419DBD10216F9337431Cs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib2B5C807DAECBF2582F55A25FD52F0208s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib2B5C807DAECBF2582F55A25FD52F0208s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib720E467FA4643BBE7DB94BA655726094s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib720E467FA4643BBE7DB94BA655726094s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE5BC9ED92A7FCCAC6AC2420C2F585520s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibE5BC9ED92A7FCCAC6AC2420C2F585520s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC0A8830CB6C7C0BF3174EE5B8FCAE599s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC0A8830CB6C7C0BF3174EE5B8FCAE599s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibFC6C9A6A21AD9D64B608783C80795A2Ds1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib548716D3CCBFFCCE3289CA4AC84C77BAs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC59DE570C68C93F1D9AD8FC08EDF89E1s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC59DE570C68C93F1D9AD8FC08EDF89E1s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib137F434FC4AF003FF59A6B93AEF90CC4s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib137F434FC4AF003FF59A6B93AEF90CC4s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib543D956C392350946725B59F3A189579s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib661425113DB677549FB583A877099409s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibB9DB45B3B6F6EAF89821901D173E4036s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibB9DB45B3B6F6EAF89821901D173E4036s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC374B95D5EAA382B56671F1B959B5D14s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibC374B95D5EAA382B56671F1B959B5D14s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib982F6086C6FB5FA30F8A9DB9D6D02359s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib982F6086C6FB5FA30F8A9DB9D6D02359s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA86F866229D008E3F1CEA362CE098ED0s1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA035C991C93DB5F7F675816A80EBBC6Cs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibA035C991C93DB5F7F675816A80EBBC6Cs1
https://trilinos.github.io/epetra.html
https://trilinos.github.io/epetra.html
https://www.vagrantup.com/
http://www.hdfgroup.org/HDF5
http://refhub.elsevier.com/S0010-4655(21)00119-3/bib71ED91D03A51587440F8F03E199E470Bs1
http://refhub.elsevier.com/S0010-4655(21)00119-3/bibB77F4E8EBC107FDD7DB45CBD1C0D783Fs1

	BEC2HPC: A HPC spectral solver for nonlinear Schrödinger and rotating Gross-Pitaevskii equations. Stationary states computa...
	1 Introduction
	2 The PCG method for computing stationary states of the GPE
	2.1 Notations and formulation
	2.2 Pseudospectral spatial discretization
	2.3 The Preconditioned Conjugate Gradient (PCG) method

	3 Implementation of the PCG method
	3.1 Implementation of FFT-based schemes in distributed memory
	3.2 BEC2HPC parallel code design

	4 Getting started with BEC2HPC
	4.1 Installation
	4.2 A first example

	5 BEC2HPC advanced usage
	5.1 Defining the initial data
	5.2 Defining the trapping potential
	5.3 3D simulation and visualization
	5.4 Grid manipulation

	6 Numerical examples
	6.1 Experimental setup
	6.2 Numerical results in 2D
	6.3 Numerical results in 3D

	7 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

