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a b s t r a c t 

In this paper, we first propose a general strategy to implement the Perfectly Matched Layer 

(PML) approach in the most standard numerical schemes used for simulating the dynamics 

of nonlinear Schrödinger equations. The methods are based on the time-splitting Bao et al. 

(2003)[15] or relaxation Besse (2004)[24] schemes in time, and FFT-based pseudospectral 

discretization method in space. A thorough numerical study is developed for linear and 

nonlinear problems to understand how the PML approach behaves (absorbing function and 

tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equa- 

tion is then proposed by using the rotating Lagrangian coordinates transformation method 

Antonelli et al. (2012), Bao et al. (2013), García-Ripoll et al. (2001)[13,16,38], some numer- 

ical simulations illustrating the strength of the proposed approach. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Since its first experimental creation in 1995 [3,26,34] , the Bose-Einstein condensation (BEC) phenomena provides an in-

credible glimpse into the macroscopic quantum world and has opened a new era in atomic and molecular physics as well

as in condensed matter physics. It has been extensively studied both experimentally and theoretically, and is still a very

active research topic [1,2,17,25,33,37,39,42–44,4 8,4 9] . At temperatures T much smaller than the critical temperature T c , the

properties of a rotating BEC are well described by a macroscopic complex-valued wave function ψ( x , t ) whose evolution is

governed by the three-dimensional (3D) Gross-Pitaevskii equation (GPE). Solving the d -dimensional ( d = 2 or 3 ) dimension-

less GPE with a rotation term [11,14] leads to the following boundary-value problem: for a given initial state ψ 0 , find the

complex-valued wave function ψ( x , t ) solution to 

i∂ t ψ(x , t) = 

[ 
−1 

2 

∇ 

2 + V (x , t) − ωL z + β| ψ | 2 
] 
ψ(x , t) , 

ψ(x , t = 0) = ψ 0 (x ) , x ∈ R 

d , t ≥ 0 , (1.1)
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where x := ( x, y, z ) ( := ( x, y ) in 2D) and t are the space and time variables, respectively. Denoting by ∇ the gradient oper-

ator, ∇ 

2 is then the laplacian operator, and V ( x , t ) is a real-valued function corresponding to the potential. The constants β
and ω respectively represent the nonlinear interaction strength and the rotating frequency. In addition, L z = i (y∂ x − x∂ y )
is the z -component of the angular momentum [11,14] . When ω = 0 , the GPE is also often called the nonlinear cubic

Schrödinger equation. Let us remark that many more complex models involving GPEs are widely used in the literature

[11,14] , including in particular nonlocal dipolar interactions or multi-components gases. 

When computing the dynamics of the rotating GPE, one can use various stable and efficient schemes that are known to

also respect some dynamical properties (mass/energy conservation, time invariance, dispersion relation, time reversibility,...). 

Here, we do not want to review all the possible methods and we rather focus on two widely used time discretization

schemes, i.e. the (Strang) time-splitting [15] and relaxation [24] methods which are second-order accurate in time. We refer

to [5,11,14] for more details about the most popular schemes and their properties. When computing fast rotating BEC through 

the GPE, quantized vorticity takes place and then highly accurate spatial discretization schemes are required to capture

the dynamics of the small quantum defects. Among the available numerical methods, the most standard way [5,11,14] is

to use FFT-based pseudospectral approximation schemes in cartesian coordinates. Indeed, such approximations are easy to

implement, efficient and highly accurate [9–11] . In particular, they can be trivially included into time-splitting schemes by

a direct integration in the Fourier domain. The implementation work for the relaxation scheme is a bit more involved,

but it remains quite simple as it relies on well-known computational bricks (i.e. FFTs, Krylov subspace solvers and simple

matrix-free preconditioners). 

In some situations arising in BECs (as well as in many situations related to the nonlinear Schrödinger equation, e.g. in

quantum optics or nonlinear wave propagation), the condensate expands. This can be the case for example when a BEC is

created and then the confining potential is no longer active. In other situations related to the nonlinear Schrödinger equa-

tion, considering that the wave function propagates out of the a priori fixed computational domain is very standard. In these

cases, one needs to use a very large computational box, leading then to extensive computational costs and memory stor-

age limitations. An alternative approach consists in considering a fixed box and then setting suitable boundary conditions

at the domain interface. According to their mathematical properties, such boundary conditions are called transparent, arti-

ficial or absorbing boundary conditions (see [4,12] for some recent reviews in quantum and relativistic mechanics). While

being now widely used in practice, their implementation in a finite-difference or finite element scheme is far from be-

ing trivial. In addition, considering such boundary conditions in a FFT-based pseudospectral approximation scheme is not

possible since periodic boundary conditions are already imposed at the domain boundary. An alternative is to use Per-

fectly Matched Layers (PMLs) as introduced in computational electromagnetism by Bérenger [19–21,47,54] . Since it is easy

to implement and accurate, this method is now widely used in many areas of computational physics and engineering, e.g.

acoustic [22,23,29,53,54] , aeroacoustic [18] , elastodynamics [27,30] , fluid mechanics [31,40,41,56] or relativistic quantum me-

chanics [6] . Concerning the application of the PML method to linear and nonlinear Schrödinger-type equations, we refer to

[4,7,12,28,35,36,46,52,57] where various developments are available in the framework of the finite-difference/finite element 

methods. (Let us remark that the PML method is different from the exterior complex scaling methods [32,45,52,55] .) To

the best of the authors’ knowledge, there is no contribution until now related to the application of PMLs in the context of

FFT-based methods, for both the time-splitting and relaxation schemes applied to Schrödinger equations and GPEs. The aim

of this paper is to address this question, to show that this can be done without great effort and that the resulting scheme

is indeed numerically efficient, accurate and that the reflection at the boundary is relatively small. 

The paper is organized as follows. In Section 2 , we introduce the PML formulation in cartesian coordinates for the GPE

without rotating term ( ω = 0 in system (1.1) ). We introduce some notations and give six types of PML absorbing functions

that will be tested later. In Section 3 , we consider first the time discretization of the PML formulation of the GPE based on

the Strang splitting scheme as well as relaxation scheme. Then, we detail how to discretize the formulation in space by the

FFT-based pseudospectral approximation scheme. In Section 4 , we develop a thorough numerical study of the approximation

schemes. In particular, we focus on the choice of the PML absorbing function and its tuning parameters in the case of

the pseudospectral schemes. The direct extension to the rotating GPE is non trivial as it is explained in Section 5 since

a gradient term is involved into the GPE in system (1.1) . We then propose a relatively simple solution by considering an

equivalent formulation in rotating Lagrangian coordinates which extends the previous PML framework with pseudospectral

approximation to the rotating case. Some numerical simulations illustrate the efficiency and accuracy of the method. Finally,

we conclude in Section 6 . 

2. PML formulation in cartesian coordinates for the GPE without rotation ( ω = 0 ) 

Let us assume that the initial profile ψ 0 is compactly supported into a bounded domain of physical interest D Phy with

boundary �Phy := ∂D Phy . To solve the GPE (1.1) , we consider now that the equation is set in the truncated domain D Phy 

i∂ t ψ(x , t) = 

[ 
−1 

2 

∇ 

2 + V (x , t) − ωL z + β| ψ | 2 
] 
ψ(x , t) , x ∈ D Phy . (2.1)

Therefore, to get a complete initial boundary value problem, additional boundary conditions (BCs) are required at the domain

boundary �Phy := ∂D Phy . Most particularly, when the potential V ( x , t ) is not trapping, then outgoing waves may emerge
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and thus suitable BCs are needed to be reflection-less or non-reflecting [4,12] . Our analysis starts in this Section with the

non-rotating GPE ( ω = 0 ). The extension to the rotating case will be next studied in Section 5 . 

Let us first introduce the concept of PML [4,12] by considering the toy model for the 1D linear Schrödinger equation, i.e.

i∂ t ψ(ν, t) = −1 

2 

∂ 2 x ψ(ν, t) , ν ∈ R . (2.2)

We assume that D Phy := [ −L ∗ν , L ∗ν ] and consider the right traveling outgoing waves only. The PML technique can be carried

out by stretching the real coordinate into the complex plane [57] : 

˜ ν = ν + e iϑ ν
∫ ν

L ∗ν
σ (s ) ds, σ (s ) ≡ 0 if s < L ∗ν . (2.3)

Here, ϑ ν ∈ (0 , π2 ) is a real constant and σ ( s ) is a real-valued function called absorbing function . Plugging (2.3) into (2.2) , we

obtain the corresponding PML equation 

i∂ t ψ(ν, t) + 

1 

2 S(ν) 
∂ ν

(
1 

S(ν) 
∂ νψ(ν, t) 

)
= 0 , ν ∈ R , (2.4)

where S(ν) = 1 + e iϑ ν σ (ν) . The constant ϑν and function σ ( ν) are chosen such that ψ is damped and decays fast enough in

ν ∈ [ L ∗ν , + ∞ ) . Hence, it suffices to truncate the semi-infinite interval [ L ∗ν , + ∞ ) as a finite right PML region [ L ∗ν , L ν ] and to im-

pose a homogeneous Dirichlet or periodic BC on ψ at ν = L ν . A similar treatment can be applied to the left semi-infinite in-

terval (−∞ , −L ∗ν ] . Denote the computational domain as D := D Phy ∪ D PML := [ −L ν , L ν ] , with D PML := [ −L ν , −L ∗ν ] ∪ [ L ∗ν , L ν ] ,

and set � := ∂D := {−L ν , L ν} . Then, the Schrödinger Eq. (2.2) can be approximated by the following PML equation within

the domain D: 

i∂ t ψ(ν, t) + 

1 

2 S(ν) 
∂ ν

(
1 

S(ν) 
∂ νψ(ν, t) 

)
= 0 , ν ∈ D, (2.5)

ψ(ν, t) = 0 , ν = ±L ν , or ψ(−L ν , t) = ψ(L ν , t) , t > 0 , (2.6)

with 

S(ν) = 

{
1 , | ν| < L ∗ν, 

1 + e iϑ ν σ (| ν| − L ν ) , L ∗ν ≤ | ν| < L ν . 
(2.7)

Here, ϑν is a given constant which is fixed as ϑ ν = 

π
4 [7,57] hereafter, and σ ( ν) is a given absorbing function. In this paper,

we consider the following six types of absorbing functions which are well studied and successfully applied e.g. to scattering

problems [22,23] 

Type 1 : σ0 (ν + δν ) 2 , Type 3 : − σ0 /ν, Type 5 : − σ0 /ν − σ0 /δν, 

Type 2 : σ0 (ν + δν ) 3 , Type 4 : σ0 /ν
2 , Type 6 : σ0 /ν

2 − σ0 /δ
2 
ν , 

(2.8)

with δν = L ν − L ∗ν being the thickness of the PML layer. Let us remark that S ( ν) is discontinuous at the interface ν = L ∗ν if

the Type 3 or Type 4 absorbing function is chosen. We are going to compare these six types of absorbing functions and

find the (range of) optimal absorbing strength σ opt 
0 

for each type of profile with different thickness δν and discretization

schemes for the full GPE. 

Let us derive the PML equation of the GPE (2.1) with ω = 0 in cartesian coordinates. Here, we only show the 2D case,

the extension to the 3D case is straightforward and is omitted for brevity. Without loss of generality, we assume that

the computational domain of interest is a rectangle, i.e., D Phy = [ −L ∗x , L ∗x ] × [ −L ∗y , L ∗y ] . Analogous to the derivation of (2.5) ,

placing a PML region D PML =: [ −L x , L x ] × [ −L y , L y ] \ D Phy surrounding D Phy , stretching the coordinates in both the x - and

y -directions, i.e., taking the following substitutions 

∂ x −→ 

∂ x 
S x (x ) 

, ∂ y −→ 

∂ y 
S y (y ) 

, (2.9)

we obtain the PML equation for the non-rotating GPE (2.1) in the computational domain D := [ −L x , L x ] × [ −L y , L y ] = D Phy ∪
D PML : 

i∂ t ψ = −1 

2 

[ 
1 

S x (x ) 
∂ x 

(
1 

S x (x ) 
∂ x 

)
+ 

1 

S y (y ) 
∂ y 

(
1 

S y (y ) 
∂ y 

)] 
ψ + 

(
V + β| ψ | 2 

)
ψ , x ∈ D, t ≥ 0 . (2.10)

The homogeneous Dirichlet or periodic BCs can then be applied at the boundary � := ∂D. To simplify the presentation,

hereafter, we let S ν (ν) = S(ν) ( ν = x, y ), with S ( ν) reading as (2.7) and denote the linear differential operator in (2.10) as 

L = −1 

[ 
1 

∂ x 

(
1 

∂ x 

)
+ 

1 

∂ y 

(
1 

∂ y 

)] 
. (2.11)
2 S x (x ) S x (x ) S y (y ) S y (y ) 
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3. Discretization ( ω = 0 ) 

In this section, we propose different approaches to discretize Eq. (2.10) . To this end, we choose �t > 0 as the time step

size and denote the discrete times by t n = n �t, for n ≥ 0. 

3.1. Time discretization 

A first well-known approach to deal with the nonlinearity in the GPE (2.10) is to apply the time-splitting technique

[5,14,15] , i.e., one solves 

i ∂ t ψ(x , t) = L ψ(x , t) , x ∈ D, t n ≤ t ≤ t n +1 , (3.1)

for the time step of length �t , followed by solving 

i ∂ t ψ(x , t) = 

[
V (x , t) + β | ψ(x , t) | 2 ]ψ(x , t) , x ∈ D, t n ≤ t ≤ t n +1 , (3.2)

for the same time step. Eq. (3.1) will be further discretized in the next subsection. For t ∈ [ t n , t n +1 ] , Eq. (3.2) leaves the

density | ψ( x , t )| 2 invariant, i.e., | ψ(x , t) | 2 = | ψ(x , t n ) | 2 := | ψ 

n (x ) | 2 . Therefore, (3.2) collapses to be a linear ODE, which can

be integrated analytically as 

ψ(x , t) = e −i [ V(x ,t n ,t)+ β | ψ 

n (x ) | 2 (t−t n ) ] ψ(x , t n ) , x ∈ D, t ∈ [ t n , t n +1 ] . 

Here, for any a, b ∈ R , function V(x , a, b) reads 

V(x , a, b) =: 

∫ b 

a 

V (x , τ ) dτ. 

Another popular approach is to use the relaxation technique introduced by Besse in [24] 

iδ+ 
t ψ 

n = L ψ 

n + 1 2 + (V 

n + 1 2 + ϕ 

n + 1 2 ) ψ 

n + 1 2 , in D , (3.3) 

with ϕ 

n + 1 
2 = 2 β| ψ 

n | 2 − ϕ 

n − 1 
2 , for n ≥ 0. Here, we set: ϕ 

− 1 
2 = β| ψ 0 (x ) | 2 , ψ 

n (x ) = ψ (x , t n ) , δ
+ 
t ψ 

n = (ψ 

n +1 − ψ 

n ) / �t and

f n + 
1 
2 = ( f n +1 + f n ) / 2 ( f = V and ψ). The relaxation scheme owns the important property that the resulting equation (3.3) is

linear and therefore does not need any nonlinear solver unlike the standard Crank-Nicolson scheme, which greatly reduces

the computational time and memory cost. 

3.2. Space discretization 

We now introduce the Fourier Pseudospectral (FP) scheme [5,14] . To this end, periodic BCs on the boundary � must be

imposed for Eq. (2.10) , and hence to both (3.1) and (3.3) . Let L and M be two even integer numbers. We define h x = 

2 L x 
L and

h y = 

2 L y 
M 

as the mesh sizes in the x - and y -directions, respectively. To simplify the notations, we introduce the indices and

grid points sets as well as the basis functions as 

T LM 

= 

{
(�, m ) ∈ N 

2 | 0 ≤ � ≤ L, 0 ≤ m ≤ M 

}
, ˜ T LM 

= 

{
(p, q ) ∈ Z 

2 | − L/ 2 ≤ p ≤ L/ 2 − 1 , −M/ 2 ≤ q ≤ M/ 2 − 1 

}
, 

G xy = { (x � , y m 

) =: (−L x + � h x , −L y + m h y ) , (�, m ) ∈ T LM 

} , 
W pq (x ) = e iμ

x 
p (x + L x ) e iμ

y 
q (y + L y ) , μx 

p = π p/L x , μ
y 
q = πq/L y , (p, q ) ∈ 

˜ T LM 

. 

Let f n �m 

( f = ψ, ϕ, V, S x , S y ) be the approximation of f ( x � , y m 

, t n ) for (�, m ) ∈ T LM 

and n ≥ 0. We denote by f n ( f = ψ, ϕ, V,

S x , S y , ) the vector with components { f n �m 

, (�, m ) ∈ T LM 

} . The Fourier pseudospectral discretization of a function ψ is given

by 

ψ(x, y, t) = 

L/ 2 −1 ∑ 

p= −L/ 2 

M/ 2 −1 ∑ 

q = −M/ 2 

̂ ψ pq (t) W pq (x, y ) , (3.4) 

where the Fourier coefficients ̂ ψ pq (t) read as 

̂ ψ pq (t) = 

1 

LM 

L −1 ∑ 

j=0 

M−1 ∑ 

k =0 

ψ �m 

(t) e −iμx 
p (x � + L x ) e −iμy 

q (y m + L y ) . (3.5) 

Hence, the Fourier pseudospectral discretizations of ∂ x ψ and ∂ y ψ are respectively given by: for (�, m ) ∈ T LM 

, (
� ∂ x � ψ 

)
�m 

(t) = 

L/ 2 −1 ∑ 

p= −L/ 2 

M/ 2 −1 ∑ 

q = −M/ 2 

iμx 
p 

̂ ψ pq (t) W pq (x � , y m 

) , (3.6) 
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[0 . 5 em ] 

(
� ∂ y � ψ 

)
�m 

(t) = 

L/ 2 −1 ∑ 

p= −L/ 2 

M/ 2 −1 ∑ 

q = −M/ 2 

iμy 
q 

̂ ψ pq (t) W pq (x � , y m 

) . (3.7)

Furthermore, we define the operators � L � , S −1 
x , S −1 

y , V 

n + 1 
2 and � ϕ 

n + 1 
2 � as follows 

� L � = −1 

2 

(
S −1 

x � ∂ x � 
(

S −1 
x � ∂ x � 

)
+ S −1 

y � ∂ y � 
(

S −1 
y � ∂ y � 

))
, (3.8)

[0 . 5 em ] 

(
S −1 

x ψ 

)
�m 

= ψ �m 

/S x �m 

, 

(
V 

n + 1 2 ψ 

)
�m 

= 

1 

2 

(
V 

n 
�m 

+ V 

n +1 
�m 

)
ψ �m 

, (3.9)

[0 . 5 em ] 

(
S −1 

y �
)

�m 

= ψ �m 

/S y �m 

, 

(
� ϕ 

n + 1 2 � ψ 

)
�m 

= 

1 

2 

(
ϕ 

n +1 
�m 

+ ϕ 

n 
�m 

)
ψ �m 

. (3.10)

The first scheme brings together the time-splitting and spectral methods, leading e.g. to the second-order Time-Splitting

Fourier Pseudospectral method (TSFP): for (�, m ) ∈ T LM 

ψ 

(1) = ψ 

n ∗ e 
−i 

(
V (t n ,t n +�t/ 2)+ β�t | ψ 

n 
LM | 2 / 2 

)
, (3.11)

[ 
i 

I 

�t 
− 1 

2 

� L � 

] 
ψ 

(2) = 

[ 
i 

I 

�t 
+ 

1 

2 

� L � 

] 
ψ 

(1) , (3.12)

ψ 

n +1 = ψ 

(2) ∗ e 
−i 

(
V (t n +�t/ 2 ,t n +1 )+ β�t | ψ 

(2) | 2 / 2 
)
. (3.13)

Here, we have: V �m 

(t 1 , t 2 ) = V(x � , y m 

, t 1 , t 2 ) . In addition, ̂ (ψ 

n 
LM 

) 
pq 

and 

̂ (ψ 

(2) ) pq are the discrete Fourier series coefficients of

the vectors ψ 

n 
LM 

and ψ 

(2) , respectively. 

The second scheme concerns the combination of the relaxation technique and spectral method, yielding the relaxation

Fourier Pseudo-spectral methods (ReFP) [ 
i 

I 

�t 
− 1 

2 

� L � − 1 

2 

V 

n + 1 2 − 1 

2 

� ϕ 

n + 1 2 � 

] 
ψ 

n +1 = 

[ 
i 

I 

�t 
+ 

1 

2 

� L � + 

1 

2 

V 

n + 1 2 + 

1 

2 

� ϕ 

n + 1 2 � 

] 
ψ 

n . (3.14)

For solving the linear systems (3.12) and (3.14) , a direct solution cannot be used since all the matrix operators are related to

variable coefficients PDEs, in particular because of the presence of the PML layer. An alternative approach [8–10] consists in

using a preconditioned Krylov subspace iterative solver. In the present paper, we consider the GMRES [50,51] , accelerated by

suitable preconditioners [8–10] , e.g. (i I 
�t 

− 1 
2 � L 0 � ) 

−1 , where L 0 is the laplacian operator (for σ = 0 ) in the extended domain

D. This operator can be trivially computed by FFT since it is a constant coefficients linear operator and can then serve as a

matrix-free preconditioner to (3.14) . 

4. Numerical results ( ω = 0 ) 

In this section, we first carry out, on a linear case and then a nonlinear case, a detailed comparison of the TSFP (3.11) –

(3.13) and the ReFP (3.14) methods. We also apply the TSFP method to simulate the dynamics of a ground state that released

from its trapping potential. To simplify the comparison, we only consider two-dimensional examples. The physical domain

is fixed to be a square centered at the origin, i.e. D Phys = [ −L, L ] 
2 
. Moreover, the size of the PML domain and the strength

of the absorbing functions in the x - and y -directions are chosen to be identical, i.e. δx = δy = δ and σ x 
0 

= σ y 
0 

= σ for some

constants δ and σ . Hence, the computational domain is D = [ −L − δ, L + δ] 
2 
. For the two methods, we choose h x = h y = h

and denote ψ 

n 
num 

as the vector consisting of the numerical solution of ψ( x , t n ) on a given grid that lie in the physical

domain D Phys . Meanwhile, we denote by ψ 

n 
ref 

the reference solution in D Phys . We define the relative � ∞ -error as 

e rel 
∞ 

(t = t n ) = 

‖ ψ 

n 
num 

− ψ 

n 
ref 

‖ ∞ 

‖ ψ 

n 
ref 

‖ ∞ 

, (4.1)

where ‖ · ‖ ∞ 

represents the standard � ∞ -norm on a vector space. 

4.1. Linear case 

Here, we consider a non-rotating linear case, i.e., we set β = ω = 0 . Moreover, the potential V and initial data ψ 0 are

chosen respectively as 

V (x , t) = −8 | x | 2 , ψ 0 (x ) = e −8 | x | 2 . (4.2)
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Fig. 1. e rel 
∞ (0 . 24) in Example 4.1 for ReFP (left) and TSFP (right) with different absorbing strengths σ and PML sizes δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With these parameters, the linear Schrödinger equation admits the following exact solution which spreads out as the time

evolves 

ψ(x , t) = 

i 

i − 4 tanh (4 t) 
exp 

{ −8 | x | 2 sech 

2 
( 4 t) + 34 i | x | 2 tanh (4 t) 

1 + 16 tanh 

2 
(4 t) 

} 

. (4.3) 

Unless stated otherwise, we fix L = 2 and �t = 10 −4 . In addition, the solution ψ 

n 
ref 

in (4.1) is taken as the exact solution

(4.3) at the grid points at time t = t n . 

Example 4.1. We first compare the different kinds of absorbing functions and we determine the associated optimal absorb-

ing strength σ for each type, and for ReFP and TSFP. To this end, we take h = 

1 
16 . Fig. 1 shows e rel ∞ 

(0 . 24) for the six types of

absorbing functions with PML sizes δ = 0 . 25 and δ = 0 . 5 . From the figures, we can see that: (i) For ReFP and TSFP, all the 6

types absorbing functions are almost of the same quality. They have different “optimal” regions for σ , which are simply a

“shift” from each other. (ii) For ReFP and TSFP, the error decays to its discretization error as δ increases. (iii) ReFP and TSFP

behave similarly for each fixed absorbing function and small parameter δ. For a larger value of δ, ReFP is more accurate than

TSFP. The preconditioned solution of the linear systems is also very efficient through the preconditioned GMRES for the FP

approaches. (iv) For the two schemes, the region of optimal σ are approximately the same for the types 1 and 2, types 3

and 4 and types 5 and 6, respectively. For types 1 and 2, larger values of σ are preferred while smaller values σ are better

for types 5 and 6. We recommend the use of intermediate values of σ for types 3 and 4. 

Example 4.2. In this example, we take the same parameters as in Example 4.1 . We further consider the stability region at

different times. Fig. 2 shows the corresponding results for types 2, 4, 6 for δ = 0 . 5 for various types of absorbing functions.

From this figure and additional experiments not shown here for brevity, we can see that: (i) For fixed h and δ, the stability
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Fig. 2. e rel 
∞ (t) at different times t and for various absorbing strengths σ for the PML size δ = 0 . 5 in Example 4.2 . We report ReFP (left) and TSFP (right) 

with absorbing functions of types 2, 4 and 6 (from top to bottom). 
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of the optimal region for σ is not fundamentally changed for different times. (ii) For other values of δ, the conclusion is

similar. (iii) The results for types 1, 3, 5 is similar to types 2, 4, 6, respectively. (iv) ReFP has the best accuracy. 

Example 4.3. We now consider different mesh sizes h with fixed time and PML sizes δ. We set the mesh size to h = 

1 
16 and

vary the absorbing strength σ and PML sizes δ. Fig. 3 shows e rel ∞ 

(0 . 25) for ReFP and TSFP with the absorbing functions of

types 2, 4, 6. From this figure and additional figures not shown here, we can see that: (i) As δ increases, the error decreases

for a fixed value of σ . (ii) The performance of types 1, 3 and 5 are the same as those of types 2, 4 and 6, respectively. (iii)

Generally, the errors of types 2, 4 and 6 are smaller than those of types 1, 3 and 5, respectively. (iv) For both ReFP and

TSFP, as δ changes, the optimal region for σ is shifted a lot for the absorbing functions of types 1 and 2, while for the other

four types, the stability region of σ does not change significantly, especially when δ is large enough. For this reason and

together with comment (ii), it is preferable to use an absorbing function of type 4 or 6. Again, ReFP is more accurate than

(but comparable with) TSFP. 

Example 4.4. Here, following the last example, we consider the error with respect to different mesh sizes h . We fix the PML

size to δ = 0 . 25 and vary the mesh size h as well as the absorbing strength σ . Fig. 4 illustrates e rel ∞ 

(0 . 25) for ReFP and TSFP

with absorbing functions of types 2, 4, 6. From this figure and additional figures not shown here, we can see that: (i) As

h decreases, the error for the same parameter σ usually decreases for both ReFP and TSFP. (ii) As h decreases, the stability

region for σ enlarged significantly. (iii) However, the error is saturating for a fixed thickness δ. 

Example 4.5. For completeness, we show in Fig. 5 the contour plots of the relative L ∞ -error 

E rel 
∞ 

(t = t n , x ) = 

| ψ 

n 
num 

− ψ 

n 
ref 

| 
‖ ψ 

n 
ref 

‖ ∞ 

(4.4) 

at different times t n in the physical domain D phys for ReSP (the plots are very similar for TSFP). We fix the thickness to

δ = 0 . 5 and consider the type 4 absorbing function with σ = 0 . 1 . As seen in Fig. 5 , the maximum relative error does not

always arise at the PML interface. Indeed, the outgoing waves travel outward and are damped when crossing the interface,

decay as they approach the computational boundary and are transmitted to the other side of the domain thanks to the

periodic boundary conditions. They are damped again when moving inward to the PML domain. The remaining outgoing

waves after the two damping processes reenter into the physical domain and cause the main errors. Hence, the location of

the maximum errors depends on how the outgoing waves are reflected back into the domain and also on the discretization

error inside the physical domain: (1) When the time t is not large enough, the remnant of the outgoing waves does not

accumulate too much inside the physical domain, hence the discretization error is dominant. Therefore, the maximum error

occurs inside the physical domain, not at the interface. (2) When the time t is large enough, the rest of the outgoing

waves then are dominant, the maximum error usually occurs on the interface, and these errors are at the same level as

their adjacent grid points. Finally, let us remark that if one would include the grid points on the interface into the error

computation (which is not the case here since the discretization points are not necessarily on the interface), then the results

shown in the figures in the paper would not change qualitatively (but quantitatively, the errors would increase a little bit

globally, i.e., all the lines in those figures would shift up a little bit). 

4.2. The nonlinear case 

In this section, we apply the proposed methods to study the nonlinear Schrödinger equation, i.e. β � = 0. Recall that from

the previous section, absorbing functions of types 4 & 6 work better than other types for each method. 

Example 4.6. We first compare the performance of the TSFP and ReFP methods for a manufactured example, setting β = −1 .

The trapping potential and initial data are chosen respectively as 

V (x ) = −1 

2 

sech 

2 
(x − t) sech 

2 
(y − t) 

(
cosh (2(x − t)) + cosh (2(y − t)) 

)
, (4.5)

ψ 0 (x ) = sech (x ) sech (y ) e i (x + y ) . (4.6) 

With these parameters, the nonlinear Schrödinger equation admits an outgoing solitary solution which can be solved ana-

lytically as 

ψ(x , t) = sech (x − t) sech (y − t) e i (x + y ) . (4.7) 

For both methods, we choose L = 32 and �t = 10 −3 . The reference solution ψ 

n 
ref 

in (4.1) is taken as the exact solution (4.7) at

the grid points at time t = t n . We fix the mesh size as h = 

1 
8 and vary the absorbing strength σ as well as the size of the

PML domain δ. Fig. 6 depicts e rel ∞ 

(31) for ReFP with different PML sizes δ and absorbing functions. Fig. 7 shows e rel ∞ 

(t) at

different times for both methods with PML size δ = 2 and type 6 absorbing function. From these figures and other numerical

experiments not reported here for conciseness, we see that: (i) The performance of the TSFP method is similar as the one

of ReFP. (ii) The performances of TSFP & ReFP are similar as for the linear cases shown in the previous sections, i.e., the

error decays as the PML size δ increases. However, the optimal region of absorbing strength σ is different from the linear
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Fig. 3. e rel 
∞ (0 . 25) vs. σ for TSFP (top) and ReFP (bottom) with absorbing functions of types 2, 4, 6 for h x = h y = 

1 
16 

and different PML sizes δ in Example 4.3 . 
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Fig. 4. e rel 
∞ (0 . 25) vs. σ for TSFP (top) and ReFP (bottom) for the absorbing function of types 2, 4, 6, with PML size δ = 0 . 25 , and for different mesh sizes 

h x = h y = h in Example 4.4 . 
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Fig. 5. Contour plots of the relative error in the inner physical domain D phys = [ −2 , 2] 
2 

for ReFP (the results are similar for TSFP) for Example 4.5 . The red 

solid line represents the location of the PML layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 6. e rel 
∞ (31) for ReFP with different PML sizes δ and absorbing functions of type 4 & 6 in Example 4.6 . 

 

 

 

 

 

 

 

 

 

 

 

 

cases. (iii) Absorbing function of type 6 is more accurate than the one of type 4 in the optimal region. Moreover, the optimal

region of type 4 function shifts as the PML size δ changes. Therefore, we suggest to use the absorbing function of type 6

for the practical computations. (iv) For both types absorbing functions, usually ReFP is more accurate than TSFP (cf. Fig. 7 ).

However, due to the nonlinearity, the preconditioner of ReFP (3.14) needs to be rebuilt at each time step, which thus is less

efficient than for the TSFP (3.11) –(3.13) where the nonlinear part can be integrated explicitly. (v) Now that the acuracy of

TSFP is not far from ReFP, we suggest that the TSFP method is used with the absorbing function of type 6 in practice. 

Example 4.7. In this example, we apply the TSFP method to simulate the dynamics of the GPE with a strong nonlinearity.

To this end, we choose β = 500 , ω = 0 and L = 16 . First, we prepare the initial data by computing the corresponding ground

state of the GPE with trapping potential V (x ) = | x | 2 / 2 . Then, we release the ground state from the trap, i.e., we set V ( x ) ≡ 0

and simulate the dynamics using TSFP. Under this set-up, the ground state is expected to extend and spreads out which

would cause problems wherever it is close to the computational domain if a PML technique is not applied. We fix the size

of the PML region, the mesh size and discretization time step respectively as δ = 2 , h = 1 / 16 , �t = 10 −3 . The absorbing

function is chosen as the Type 6 function with absorbing strength σ = 100 . To compare, we also report the results obtained
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Fig. 7. e rel 
∞ (t) at different times t for ReFP and TSFP with PML size δ = 2 and type 6 absorbing functions in Example 4.6 . 

Fig. 8. Contour plots of | ψ( x , t )| 2 at different times for Example 4.7 solved by TSFP without PML (upper) and with PML (Lower). The red solid lines 

represents the interface of the PML region and Physical domain. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

by using TSFP without PML (i.e. set σ = 0 ). Fig. 8 shows the contour plots of the density | ψ( x , t )| 2 at different times for

the TSFP method with and without PML techniques. From the figure we can see that the waves are reflected back into the

physical domain leading to a nonphysical dynamics if no PML is imposed. In contrast, adding a PML region can absorb the

outgoing waves well, and the dynamics of the ground state in the physical domain can be well reproduced. 

5. Extension to rotating BECs ( ω �= 0) 

5.1. Direct PML formulation in cartesian coordinates 

Let us consider the full GPE (2.1) with rotating term. The main difference now is that the z -component of the angular

momentum −ω L z = −iω (y∂ x − x∂ y ) is involved into the equation. Extending the previous PML technique in a stable way is

not trivial. One possible direction could be inspired by the case of the convected Helmholtz equation (set in the frequency

domain) which writes according to the pressure field p 

(1 − M 

2 ) ∂ 2 x p + ∂ 2 y p + 2 ikM∂ x p + k 2 p = f, (5.1)

in D Phys . Here, M = v 0 /c 0 and k = ˜ ω /c 0 , are the Mach number ( −1 < M < 1 ) and the wavenumber, respectively. In addition,

c 0 is the sound velocity in the fluid, ˜ ω > 0 is the pulsation of the wave, f is a source term, and the mean velocity v 0 is sub-

sonic and uniform. Following [18] , a well-suited stable PML for the duct problem (along the x -direction) can be introduced

as 

(1 − M 

2 )(α(x ) ∂ x + iλ(x )) 2 p + ∂ 2 y p + 2 ikM(α(x ) ∂ x + iλ(x )) p + k 2 p = f, (5.2)
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in D. The function α := (1 + iσ/ ̃  ω ) −1 must satisfy  ( α) > 0 and � ( α) < 0, and λ(x ) ∈ R . The choice of λ depends on the

constants M and k . Extending a similar approach to the rotating GPE is not clear for many reasons: the domain is not a

duct but a rectangle, the operator L z is much more complicated since it involves a linear combination of terms x ∂ y and y ∂ x
with variable dependent coefficients (i.e. x & y ). For example, a direct PML approach via coordinate stretching leads to the

following PML formulation of the rotating GPE: for x ∈ D, t ≥ 0 

i∂ t ψ = −1 

2 

[ 
1 

S x 
∂ x 

(
1 

S x 
∂ x 

)
+ 

1 

S y 
∂ y 

(
1 

S y 
∂ y 

)] 
ψ + 

[ 
V + β| ψ | 2 

] 
ψ − iω 

[
y ̂ S y 

S x 
∂ x − x ̂ S x 

S y 
∂ y 

]
ψ, (5.3)

with 

̂ S ν = 1 + 

e iϑ ν

ν

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

∫ ν

L v 

σν(s ) ds, ν > L ν , 

0 , −L ν ≤ ν ≤ L ν, ∫ ν

−L v 

σν(s ) ds, ν < −L ν , 

ν = x, y. (5.4)

However, this PML approach will result in inaccurate computations (not reported here). Blow-up always arises at the inter-

face between the PML region (i.e. D PML ) and the physical domain (i.e. D Phys ) for all the proposed absorbing functions and

numerical schemes. 

5.2. PML formulation in rotating Lagrangian coordinates 

To get a well-posed PML formulation for the rotating GPE, we consider an alternative based on a reformulation of the ini-

tial problem into a rotating Lagrangian coordinates framework [16] . For any time t ≥ 0, let R (t) be the orthogonal rotational

matrix 

R (t) = 

(
cos (ωt) sin (ωt) 

− sin (ωt) cos (ωt) 

)
, if d = 2 , 

R (t) = 

( 

cos (ωt) sin (ωt) 0 

− sin (ωt) cos (ωt) 0 

0 0 1 

) 

, if d = 3 . 

(5.5)

It is easy to check that R 

−1 (t) = R 

T (t) , for any t ≥ 0 and R (0) = I, where I is the identity matrix. For t ≥ 0, we introduce

the rotating Lagrangian coordinates ̃  x as [13,16,38] ˜ x = R 

−1 (t) x = R 

T (t) x ⇔ x = R (t) ̃  x , x ∈ R 

d , (5.6)

and we denote by ψ := ψ( ̃  x , t) the wave function in the new coordinates system ˜ ψ ( ̃  x , t) = ψ ( R (t ) ̃  x , t ) , x ∈ R 

d , t ≥ 0 . (5.7)

Therefore, the rotating GPE can be rewritten as a GPE without rotation term but with a time-dependent potential 

i∂ t ̃  ψ ( ̃  x , t) = 

[ 
−1 

2 ̃

 ∇ 

2 + V (R (t) ̃  x , t) + β| ̃  ψ | 2 
] ˜ ψ ( ̃  x , t) , (5.8)

setting ˜ ∇ 

2 = ∂ 2 ˜ x 
+ ∂ 2 ˜ y 

. Now, the PML technique can be directly applied to the new GPE (5.8) . All the details remain the

same by just changing the symbols x, y to ˜ x , ˜ y , respectively. The TSFP and ReFP proposed for the non-rotating GPE extend

here. For the TSFP, the use of a numerical integration [13,16,38] is needed for evaluating the time-dependent potential.

Let us remark that a different transformation was applied in [35] when dealing with cross-derivatives into the nonlinear

Schrödinger equation and using a fourth-order spatial finite-difference scheme and a fourth-order additive Runge-Kutta time

scheme. 

5.3. Numerical examples 

Example 5.1. We apply the TSFP method to simulate the dynamics of the rotating GPE with strong nonlinearity. To this end,

we fix β = 10 0 0 0 and study two cases: one with rotating frequency ω = 2 . 5 while the other considers ω = 4 . The initial data

are prepared by computing the ground states of the GPE with the same values of β & ω under the quadratic-quartic trapping

potential: 

V (x, y ) = 

3(x 2 + y 2 ) 2 − 4(x 2 + y 2 ) 

40 

. (5.9)

The contour plot of the density of the ground states, and hence for the initial data | ψ(x, t = 0) | 2 , for each case is illustrated

in the first subfigure in Figs. 9 and 10 , respectively. We then release the ground states from the trapping potential (i.e. set
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Fig. 9. Contour plots of | ψ( x , t )| 2 at different times for Example 5.1 with ω = 2 . 5 . The green solid lines represent the interface of PML region and “Physical 

domain” ˜ D Phy in rotating Lagrange coordinates, and the black dashed lines show the physical domain D Phy in Cartesian coordinates. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Contour plots of | ψ( x , t )| 2 at different times for Example 5.1 with ω = 4 . The green solid lines represent the interface of PML region and “Physical 

domain” ˜ D Phy in rotating Lagrange coordinates, and the black dashed lines show the physical domain D Phy in Cartesian coordinates. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

V ( x ) ≡ 0) and simulate the dynamics, which is solved by the TSFP method with absorbing function of type 6 in rotating

Lagrangian coordinates. For both cases, the physical domain (in cartesian coordinates) is set to be D Phys = [ −16 , 16] 
2 
. To

recover the wave function ψ( x , t ) in D Phys (which is transformed back from 

˜ ψ ( ̃  x , t) ), in the rotating Lagrangian coordinates

we set the “physical domain” and computational domain as ˜ D Phys = [ −24 , 24] 
2 

and ˜ D = [ −27 , 27] 
2 
, respectively. Moreover, 

the mesh size and time step are chosen as h = 1 / 16 and �t = 10 −3 . Figs. 9 ( ω = 2 . 5 ) and 10 ( ω = 4 ) show the contour plots

of | ψ( x , t )| 2 at different times in cartesian coordinates. From the figure, we can see clearly that the TSFP method works very
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well. Due to the absence of trap, the wave function in both cases spreads out and hence all the vortices exit. Finally, nothing

remains in the physical domain. 

6. Conclusion 

In this paper, we proposed and implemented in a relatively simple way the PML formulation of the rotating GPE in carte-

sian coordinates for the time-splitting and relaxation pseudospectral schemes. A thorough numerical study shows that the

PML absorbing functions proposed in Bermúdez et al. [22] , 23 ] are best suited in terms of accuracy and numerical stabil-

ity, thanks to the tuning parameters. In addition, a high accuracy of the pseudospectral approximation scheme is observed.

In the case of the rotating GPE, a Lagrangian coordinates transformation is used to rewrite the original equation in the

framework of non-rotating GPEs with time-dependent potential. Following this approach, the PML formulation is directly

extended to the rotating case, showing that the method remains very efficient and accurate for truncating the infinite spa-

tial domain. Future investigations concern the extension of the PML formulations to polar coordinates and to more general

GPEs, including dipolar interactions and multi-components problems. 
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