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Abstract. In this paper, we propose a multi-component Gross-Pitaevskii-Lohe (GPL
for brevity) system in which quantum units interact with each other such that collective
behaviors can emerge asymptotically. We introduce several sufficient frameworks leading
to complete and practical synchronizations in terms of system parameters and initial data.
For the modeling of interaction matrices we classify them into three types (fully identical,
weakly identical and heterogeneous) and present emergent behaviors correspond to each
interaction matrix. More precisely, for the fully identical case in which all components
are same, we expect the emergence of the complete synchronization with exponential
convergence rate. On the other hand for the remaining two interaction matrices, we can
only show that the practical synchronization occurs under well-prepared initial frameworks.
For instance, we assume that a coupling strength is sufficiently large and perturbation of an
interaction matrix is sufficiently small. Regarding the practical synchronization estimates,
due to the possible blow-up of a solution at infinity, we a priori assume that the L4-norm
of a solution is bounded on any finite time interval. In our analytical estimates, two-point
correlation function approach will play a key role to derive synchronization estimates. We
also provide several numerical simulations using time splitting Crank-Nicolson spectral
method and compare them with our analytical results.

1. Introduction

After the first realization of the Bose-Einstein condensate (BEC) [2, 18, 23] for a trapped
dilute Bosonic gas in 1995, the BEC has received considerable attention from mathematics
and physics communities. Below a sufficiently low temperature smaller than the critical
temperature Tc, it is well known in [28, 48] that the properties of the BEC are well described
by the complex-valued wave function ψ = ψ(x, t) whose governing dynamics is the Gross-
Pitaevskii equation (GPE):

i∂tψ = −1

2
∆ψ + V ψ + β|ψ|2ψ, x ∈ Rd, t > 0, (1.1)

where i =
√
−1 denotes the imaginary unit, and V = V (x) and β represent a real-valued

trapping potential determined by the system and the short-time interaction rate, respec-
tively. Several interesting properties of the BEC such as long-range dipole-dipole interaction,
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rotating frame and spin-orbit coupling can be considered both physically and mathemat-
ically (see [10] for a nice introduction for the BEC). From the numerics point of view,
there are numerous developments to discretize GPE (1.1) via Crank-Nicolson finite differ-
ence (CNFD) method [3, 10, 11, 29] and time-splitting sine pseudospectral method (TSSP)
method [10, 12, 14, 15, 16, 17]. We also refer the reader to [3] as a review of numerical
methods for nonlinear Schrödinger equations.

Recently, quantum synchronization attracts considerable interests from physics and en-
gineering communities, especially in quantum optics, due to its potential application in
quantum computing, quantum information and optomechanical control [25, 26, 27, 34, 39,
42, 43, 46, 47, 50, 54, 55, 56]. Moreover, there has been an attempt to link between classical
synchronization and quantum entanglement [52]. See [1, 32, 49] for a brief introduction
to classical synchronization. To date, several mathematical models were proposed to de-
scribe quantum synchronization, e.g., the quantum Van der Pol oscillator [41, 51], quantum
Liouville-type equations [5] and matrix-valued quantum Kuramoto model [24, 31, 33, 45],
etc. Among them, we are interested in synthesizing the M. Lohe’s idea in [6, 20, 21, 35, 36]
together with the GPE as a principle of modeling.

To fix the idea, we consider a quantum system whose components are distributed on each
node, and ψj = ψj(x, t) denotes the wave-function of the j-th quantum sub-systems on the

spatial domain Rd. We assume that the dynamics of ψj is governed by the multi-component
Gross-Pitaevskii-Lohe system:i∂tψj = −1

2
∆ψj + Vjψj +

N∑
k=1

βjk|ψk|2ψj +
iκ

2N

N∑
k=1

ajk

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
,

ψj(x, 0) = ψ0
j (x), (x, t) ∈ Rd × R+, j = 1, · · · , N.

(1.2)

For κ = 0, system (1.2) has been introduced as a model for multi-component model BEC
[7, 8, 53] and/or spinor BEC [9, 12, 17]. Here, Vj = Vj(x) is an external trapping potential
acted on j-th node, B = (βjk) takes account for the particle interaction rate where all βjk
have positive values so that our system becomes defocusing, κ represent a positive Lohe
coupling strength and A = (ajk) describes the network structure between quantum sub-
systems. Throughout the paper, we assume that the external potential Vj has the form of
quadratic function:

Vj(x) =
d∑

k=1

(ωkj )2

2
|xk|2, x = (x1, · · · , xd) ∈ Rd, ωkj > 0 for all j, k. (1.3)

Global well-posedness for system (1.2) with (1.3) can be obtained using standard Strichartz
estimate and energy estimate (see Theorem 3.1). In particular, global well-posedness theory
yields that we have a uniform bound for ψj in the L4-norm in any finite-time interval. On
the other hand, when Gross-Pitaevskii terms are zero, i.e., B = O, system (1.2) becomes
the Schrödinger-Lohe system whose emergent dynamics has been extensively studied in
[5, 20, 21, 30, 35, 36, 37].

In this paper, we provide several sufficient frameworks leading to collective behaviors of
the multi-component system (1.2). We denote the collective behaviors to describe emergent
phenomena exhibiting the vanishing of difference between wave functions in some sense.
More precisely, when the L2-distances between all wave functions tend to zero, we call it
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“complete synchronization” (see Definition 3.1(i)). This is the case where external poten-
tials are all identical. In contrast, when external potentials are distinct, it is most unlikely
that the L2-distances between wave functions tend to zero asymptotically (e.g., see Case 2
and Figures 6.2(b)–(d) in Example 6.1 ). Hence we cannot expect the complete synchro-
nization. Thus, we need to introduce a weak concept of synchronization, namely “practical
synchronization” to denote the situation that we can make the L2-distances small by tuning
the Lohe coupling strength κ large enough (see Definition 3.1(ii)).

The main results of this paper are two-fold. First, we deal with a two-component system
with N = 2 and identical harmonic potential as an external potential. When the interaction
matrix B = (βij) is a positive constant multiple of J2 (where all entries are one), our first
result says that the complete synchronization occurs asymptotically and center-of-mass
tends to harmonic motion asymptotically (see Theorem 3.2). Second, we deal with a multi-
component system with N ≥ 3 under three types of coupling matrices (fully identical,
weakly identical and heterogeneous). More precisely, we consider the following three cases
in terms of the interaction matrix B = (βij):

(i) (Fully identical interaction) : B = βJN ,

where JN denotes the N ×N matrix whose components are all 1.

(ii) (Weakly identical interaction) : B = βJN + diag(ε1, · · · , εN ).

(iii) (heterogeneous interaction) : B =


β β12 · · · β1N

β21 β · · · β2N

...
...

. . .
...

βN1 βN2 · · · β

+ diag(ε1, · · · , εN ).

For the fully identical case, if the relative distances between initial data are small, the
Lohe coupling strength is positive and the network topology A =: (aij) is close to the
identity matrix in L∞ sense (see the condition (3.6)), the complete synchronization occurs
exponentially fast (see Theorem 3.3), i.e., there exists a positive constant α depending only
on the network structure A such that

max
1≤i,j≤N

‖ψi(t)− ψj(t)‖L2(Rd) ≤ O(1)e−αt, t ≥ 0.

On the other hand, for the weakly identical and heterogeneous cases, we impose several
initial conditions on the system parameters. For instance, as in the identical case, the
network topology is close to the identity matrix in L∞-norm. This is realized as λ(A) > 0
in Theorems 3.4 and 3.5. For the interaction matrix B, its perturbation from the identity
matrix is sufficiently small and for the coupling strength κ, it should be sufficiently large
and we provide its lower bound, which would not be optimal, in (3.7) and (3.10). To be
more specific, we control the maximal L2-distance between wavefunctions in terms of 1/κ
so that we are able to make the maximal L2-distance small as we wish by controlling the
coupling strength. On the other hand, due to the possible blow-up of the L4-norms of a
global solution at t→∞, we do not provide the uniform-in-time practical synchronization
estimate. Note that since the L4-estimate is not required in the identical case, we can
present the uniform-in-time estimate which is valid on t → ∞. Hence, when we deal with
the weakly identical and heterogeneous cases, we alternatively consider the estimates valid
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on any finite time interval. To this end, we derive practical synchronization estimates on
any finite-time interval: for T > 0,

sup
0≤t≤T

max
1≤i,j≤N

‖ψi(t)− ψj(t)‖L2(Rd) ≤ O
( 1√

κ

)
,

under suitable assumptions on the network structure and large coupling strength (see The-
orems 3.4 and 3.5).

The rest of the paper is organized as follows. In Section 2, we study a priori estimates for
the multi-component GPL system and derive the dynamics of the mass, energy and two-
point correlation function. We also briefly discuss the relation with other synchronization
models. In Section 3, we present our two main results on the two-component system and
multi-component system. In Section 4, we provide the proof of the two-component system.
More precisely, we show that for generic initial data, complete synchronization and periodic
harmonic motion can arise simultaneously. In Section 5, for the multi-component system,
we present two frameworks leading to the practical synchronization. In Section 6, we pro-
vide several numerical simulations and compare them with our analytical results. Finally,
Section 7 is devoted to a summary of our main results and some remaining issues for future
works. In Appendix A, we present a proof of Theorem 3.1, and in Appendix B, we provide
a proof of Lemma 4.3.

Notation: Let f and g be complex-valued functions defined on Rd and p ∈ [1,∞]. Then,
we set Lp-norm of f as ‖f‖p. In particular, we denote the inner product and L2-norm as
follows:

〈f, g〉 :=

∫
Rd
f(x)ḡ(x)dx, ‖f‖ :=

√
〈f, f〉,

where ḡ denotes the complex conjugate of g. For given finite sequences (pi), (pij) in RN and
RN×N , we set

max
i
pi := max

1≤i≤N
pi, min

i
pi := min

1≤i≤N
pi, max

k,l
pkl := max

1≤k,l≤N
pkl, min

k,l
pkl := min

1≤k,l≤N
pkl.

2. Preliminaries

In this section, we study a priori estimates for the multi-component Gross-Pitaevskii-Lohe
(GPL) system and relations with other existing models for synchronization.

2.1. The Gross-Pitaevskii-Lohe system. Consider the Cauchy problem for the GPL
system:i∂tψj = −1

2
∆ψj + Vjψj +

N∑
k=1

βjk|ψk|2ψj +
iκ

2N

N∑
k=1

ajk

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
,

ψj(x, 0) = ψ0
j (x), (x, t) ∈ Rd × R+, j = 1, · · · , N.

(2.1)

Note that when we turn off the Lohe coupling with κ = 0, system (2.1) reduces to the
multi-component Gross-Pitaevskii system [7, 8, 53] for BEC:

i∂tψj = −1

2
∆ψj + Vjψj +

N∑
k=1

βjk|ψk|2ψj , t > 0, j = 1, · · · , N.
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In contrast, when we set βjk ≡ 0 in system (2.1), system (2.1) reduces to the Schrödinger-
Lohe model for quantum synchronization which has been introduced in [44]:

i∂tψj = −1

2
∆ψj + Vjψj +

iκ

2N

N∑
k=1

ajk

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
, t > 0, j = 1, · · · , N.

Hence, the GPL system contains two quantum mechanical phenomena: the Bose-Einstein
condensation and the quantum synchronization.

Now, we look for the relation with classical synchronization models. To see the relation,
we need to set ansätze for Vj and ψj :

Vj(x) = vj ∈ R : constant, ψj(x, t) := e−iθj(t), (x, t) ∈ Rd × R+.

We substitute the ansätze above into (2.1)1 to get

θ̇je
−iθj =

(
N∑
k=1

βjk + vj

)
e−iθj +

iκ

2N

N∑
k=1

aik

(
e−iθk − e−i(θj−θk)e−iθj

)
. (2.2)

We multiply the relation (2.2) with eiθj and take real parts in both sides to find the Ku-
ramoto model [40]:

θ̇j = νj +
κ

N

N∑
k=1

sin(θk − θj), νj :=

N∑
k=1

βjk + vj .

Thus, the GPL system incorporates the quantum and classical synchronous features.

2.2. A priori estimates. In this subsection, we study a priori estimates such as the L2-
conservation and dissipative energy estimate.

For Ψ = (ψ1, · · · , ψN ), we introduce an energy functional E [Ψ] and energy production
terms as follows:



6 WEIZHU BAO, SEUNG-YEAL HA, DOHYUN KIM, AND QINGLIN TANG

E1
j [Ψ] :=

∫
Rd

[
1

2
|∇ψj |2 + Vj |ψj |2 +

1

2

N∑
k=1

βjk|ψk|2|ψj |2
]
dx, j = 1, · · · , N,

E2
j [Ψ] :=

∫
Rd

[
1

2
|∇ψj |2 +

1

4N

N∑
k=1

(Vj + Vk)(|ψj |2 + |ψk|2)

+
1

8N

N∑
k,`=1

(βj` + βk`)|ψ`|2(|ψj |2 + |ψk|2)

]
dx,

rav
j (t) :=

1

N

N∑
k=1

Re〈ψj , ψk〉, E [Ψ] :=

N∑
j=1

E1
j [Ψ],

Ed[Ψ] :=
κ

4N

N∑
j,k=1

∫
Rd
|∇ψk −∇ψj |2 dx+

∫
Rd

(Vj + Vk)|ψj − ψk|2 dx

+
κ

8N

N∑
j,k,`=1

∫
Rd

(βj` + βk`)|ψj − ψk|2 dx.

(2.3)

Remark 2.1. E1
j [Ψ] is the energy of j-th wavefunction, and it is well-known that the energy

E1
j [Ψ] is conserved for κ = 0 and each j = 1, · · · , N . On the other hand, E2

j [Ψ] measures
how oscillators are far from the identical state. More precisely, for the identical external
potentials and interaction rates:

Vj ≡ V, B = βJN ,

it follows from (A.4) that

N∑
j=1

E1
j [Ψ] =

N∑
j=1

E2
j [Ψ].

Finally, Ed[Ψ] describes the total energy difference between wavefunctions.

In the following lemma, we show that L2-conservation of ψj and energy estimates. How-
ever, we see that the total energy would not be conserved along the GPL flow.

Lemma 2.1. Let ψj be a global smooth solution to (2.1) with the following conditions:

‖ψ0
j ‖ = 1, for all j = 1, · · · , N and A = JN .

Then, we have

d

dt
‖ψj‖2 = 0, j = 1, · · · , N, d

dt
E [Ψ] = κ

N∑
j=1

E2
j [Ψ]− κ

N∑
j=1

rjE1
j [Ψ]− κEd[Ψ], t > 0.

Proof. (i) The L2-conservation is rather straightforward. Thus, we omit its details.
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(ii) Since the energy in relation (2.3) is conserved for the case κ = 0, we only need to focus
on the term containing the Lohe coupling strength κ. Note that the following relation holds:

∂t|ψj |2 = ∂t

(
ψjψ̄j

)
= (∂tψj)ψ̄j + ψj∂tψj = ∂tψjψj + ∂tψjψj = 2Re

(
∂tψj · ψ̄j

)
. (2.4)

By integration by parts, we have

d

dt
E [Ψ] =

N∑
j=1

∫
Rd
∂t

(
−1

2
ψ̄j∆ψj

)
+ ∂t

(
Vjψ̄jψj

)
+ ∂t

(
1

2

N∑
`=1

βj`|ψ`|2ψ̄jψj

)

=
N∑
j=1

∫
Rd

Re

[
∂tψj

(
−1

2
∆ψ̄j + Vjψ̄j +

1

2

N∑
`=1

βj`|ψ`|2ψ̄j

)]
dx

=
κ

N

N∑
j=1

∫
Rd

Re

[(
N∑
k=1

ψk − 〈ψj , ψk〉ψj

)(
−1

2
∆ψ̄j + Vjψ̄j +

1

2

N∑
`=1

βj`|ψ`|2ψ̄j

)]
dx

=
κ

N

N∑
j,k=1

∫
Rd

Re

[
−1

2
ψk∆ψ̄j + Vjψkψ̄j +

1

2

N∑
`=1

βj`|ψ`|2ψkψ̄j

]
dx

− κ

N

N∑
j,k=1

Re

[
〈ψj , ψk〉

∫
Rd

(
−1

2
ψj∆ψ̄j + Vj |ψj |2 +

1

2

N∑
`=1

βj`|ψ`|2|ψj |2
)
dx

]
=: I11 + I12.

(2.5)

Below, we present estimates of I11 and I12, respectively.

• (Estimate of I11): For the notational simplicity, we set

Cj [Ψ] :=
1

2

N∑
`=1

βj`|ψ`|2 ∈ R, j = 1, · · · , N. (2.6)

Then, we split the term I11 into two terms:

I11 =
κ

N

N∑
j,k=1

∫
Rd

Re

[
−1

2
ψk∆ψ̄j + Vjψkψ̄j +

1

2

N∑
`=1

βj`|ψ`|2ψkψ̄j

]
dx

=
κ

N

N∑
j,k=1

∫
Rd

Re

[
−1

2
ψk∆ψ̄j + (Vj + Cj [Ψ])ψkψ̄j

]
dx

=: I111 + I112.

(2.7)

� (Estimate of I111): We use the following identity:

2Re(u · v̄) = |u|2 + |v|2 − |u− v|2 for u, v ∈ Cd, (2.8)
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to find

I111 =
κ

N

N∑
j,k=1

∫
Rd

Re

[
−1

2
ψk∆ψ̄j

]
dx =

κ

N

N∑
j,k=1

∫
Rd

Re

[
1

2
∇ψk · ∇ψ̄j

]
dx

=
κ

N

N∑
j,k=1

∫
Rd

1

4

(
|∇ψk|2 + |∇ψj |2 − |∇ψk −∇ψj |2

)
dx

=
κ

2

N∑
j=1

∫
Rd
|∇ψj |2dx−

κ

4N

N∑
j,k=1

∫
Rd
|∇ψk −∇ψj |2 dx.

(2.9)

� (Estimate of I112): We use the index change trick j ↔ k and the identity (2.8) to see

I112 =
κ

N

N∑
j,k=1

∫
Rd

Re
[
(Vj + Cj [Ψ])ψkψ̄j

]
dx

=
κ

2N

N∑
j,k=1

∫
Rd

Re
[
(Vj + Cj [Ψ])ψkψ̄j + (Vk + Ck[Ψ])ψjψ̄k)

]
dx

=
κ

2N

N∑
j,k=1

∫
Rd

Re
[
(Vj + Cj [Ψ] + Vk + Ck[Ψ])ψkψ̄j

]
dx

=
κ

4N

N∑
j,k=1

∫
Rd

(Vj + Vk + Cj [Ψ] + Ck[Ψ])(|ψk|2 + |ψj |2 − |ψj − ψk|2)dx

=
κ

4N

N∑
j,k=1

∫
Rd

(Vj + Vk)(|ψk|2 + |ψj |2) dx+
κ

4N

N∑
j,k=1

∫
Rd

(Cj [Ψ] + Ck[Ψ])(|ψk|2 + |ψj |2) dx

− κ

4N

N∑
j,k=1

∫
Rd

(Vj + Vk + Cj [Ψ] + Ck[Ψ])|ψj − ψk|2 dx.

(2.10)

In (2.7), it follows from (2.9) and (2.10) that

I11 =
κ

2

N∑
j=1

∫
Rd
|∇ψj |2dx+

κ

4N

N∑
j,k=1

∫
Rd

(Vj + Vk)(|ψk|2 + |ψj |2) dx

+
κ

4N

N∑
j,k=1

∫
Rd

(Cj [Ψ] + Ck[Ψ])(|ψk|2 + |ψj |2) dx− κ

4N

N∑
j,k=1

∫
Rd
|∇ψk −∇ψj |2 dx

− κ

4N

N∑
j,k=1

∫
Rd

(Vj + Vk + Cj [Ψ] + Ck[Ψ])|ψj − ψk|2 dx.

(2.11)
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• (Estimate of I12) By straightforward calculation, one has

I12 = − κ
N

N∑
j,k=1

Re

[
〈ψj , ψk〉

∫
Rd

(
−1

2
ψj∆ψ̄j + (Vj + Cj [Ψ])|ψj |2dx

)]

= − κ
N

N∑
j,k=1

Re

[
〈ψj , ψk〉

∫
Rd

1

2
|∇ψj |2 + (Vj + Cj [Ψ])|ψj |2 dx

]

= −κ
N∑
j=1

rj

∫
Rd

1

2
|∇ψj |2 + Vj |ψj |2 + Cj [Ψ]|ψj |2 dx.

(2.12)

In (2.5), we combine (2.11) and (2.12) to obtain the desired energy estimate:

d

dt
E [Ψ] = κ

N∑
j=1

E2
j [Ψ]− κ

N∑
j=1

rjE1
j [Ψ]− κEd[Ψ], t > 0. (2.13)

Note that we do not have definite monotonicity of the energy functional. �

Next, we introduce our key quantity “two-point correlation functions” for synchronization
estimates as follows:

hij := 〈ψi, ψj〉, dav
i (A) :=

1

N

N∑
j=1

aij , i, j = 1, · · · , N.

Lemma 2.2. Let ψj be a global smooth solution to (1.2) with ‖ψ0
j ‖ = 1 for j = 1, · · · , N .

Then, for t > 0 and i, j = 1, · · · , N , one has

d

dt
(1− hij) = i

∫
Rd

(Vi − Vj)ψiψ̄jdx

+ i

∫
Rd

(
(βji − βii)|ψi|2 + (βjj − βij)|ψj |2 +

∑
k 6=i,j

(βik − βjk)|ψk|2
)
ψiψ̄jdx

− κ

2
(dav
i (A) + dav

j (A))(1− hij) +
κ

2N

N∑
k=1

(
aik(1− hik)(1− hij) + ajk(1− hkj)(1− hij)

+ (aik − ajk)(1− hkj − (1− hik))
)
.

(2.14)
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Proof. We use (1.2)1 to get

d

dt
〈ψi, ψj〉 = 〈∂tψi, ψj〉+ 〈ψi, ∂tψj〉

=

(
i

2
〈∆ψi, ψj〉 −

i

2
〈ψi,∆ψj〉

)
+
(
− i〈Viψi, ψj〉+ i〈ψi, Vjψj〉

)
− i

N∑
k=1

(
〈βik|ψk|2ψi, ψj〉+ i〈ψi, βjk|ψk|2ψj〉

)

+
κ

2N

N∑
k=1

aik〈ψk − hikψi, ψj〉+ ajk〈ψi, ψk − hjkψj〉

=: I21 + I22 + I23 + I24.

In what follows, we present the estimates for I2k, k = 1, 2, 3, 4, separately.

• (Estimate of I21): We use the self-adjoint property of the Laplacian to see

I21 =
i

2
〈∆ψi, ψj〉 −

i

2
〈ψi,∆ψj〉 =

i

2
〈ψi,∆ψj〉 −

i

2
〈ψi,∆ψj〉 = 0.

• (Estimate of I22): Since Vi is real-valued, one has

I22 = −i〈Viψi, ψj〉+ i〈ψi, Vjψj〉 = i

∫
Rd

(Vj − Vi)ψiψ̄j dx.

• (Estimate of I23): We split the term I23 into several terms to find

I23 =

N∑
k=1

〈
−iβik|ψk|2ψi, ψj

〉
+ i
〈
ψi, βjk|ψk|2ψj

〉
= −i〈βii|ψi|2ψi, ψj〉 − i〈βij |ψj |2ψi, ψj〉 − i

N∑
k 6=i,j
〈βik|ψk|2ψi, ψj〉

+ i〈ψi, βji|ψi|2ψj〉+ i〈ψi, βjj |ψj |2ψj〉+ i

N∑
k 6=i,j
〈ψi, βjk|ψk|2ψj〉

= i(βji − βii)
∫
Rd
|ψi|2ψiψ̄j dx+ i(βjj − βij)

∫
Rd
|ψj |2ψiψ̄j dx

+ i
∑
k 6=i,j

(βjk − βik)
∫
Rd
|ψk|2ψiψ̄j dx.
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• (Estimate of I24): We recall a definition of the two-point correlation function hij to see

I24 =
κ

2N

N∑
k=1

[
aik〈ψk − hikψi, ψj〉+ ajk〈ψi, ψk − hjkψj〉

]

=
κ

2N

N∑
k=1

[
aik(hkj − hikhij) + ajk(hik − hkjhij)

]

=
κ

2N

N∑
k=1

[
aikhik(1− hij) + aik(hkj − hik) + ajkhkj(1− hij) + ajk(hik − hkj)

]

=
κ

2N

N∑
k=1

[(
aik(hik − 1) + ajk(hkj − 1)

)
(1− hij) + (aik + ajk)(1− hij)

+ (aik − ajk)(hkj − hik)
]
.

Finally, we combine all estimates to find the desired dynamics.
�

As a direct application of Lemma 2.2, we can derive cross-ratio like quantities which play
a key role in the selection of possible asymptotic states:

Rijk` :=
(1− hij)(1− hk`)
(1− hi`)(1− hkj)

, 1 ≤ i, j, k, ` ≤ N. (2.15)

In fact, authors of [37] showed that the quantities above are conserved along the GPL
system with B = O and A = JN . Here, we also show that this quantity is conserved along
the flow (1.2) provided that A = JN and B = βJN .

Corollary 2.1. Suppose that the initial data, the interaction matrix B, network topology A
and external potentials satisfy

A = JN , B = βJN , ‖ψ0
j ‖ = 1, Vj ≡ V, j = 1, · · · , N, (2.16)

and let ψj be a smooth global solution to (1.2). Then, Rijk` is invariant under the flow
(2.1).

Proof. We substitute (2.16) into (2.14) to see

d

dt
(1− hij) = − κ

2N

N∑
k=1

(hik + hkj)(1− hij)

= −κ(1− hij)(〈ψi, ζ〉+ 〈ζ, ψj〉), ζ :=
1

2N

N∑
k=1

ψk.

This yields
(1− hij)′

1− hij
= −κ(〈ψi, ζ〉+ 〈ζ, ψj〉). (2.17)

On the other hand, it follows from (2.15) that

lnRijk` = ln(1− hij) + ln(1− hk`)− ln(1− hi`)− ln(1− hkj).
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Finally, we differentiate the relation above and use (2.17) to obtain

d

dt
lnRijk` =

(1− hij)′

1− hij
+

(1− hk`)′

1− hk`
− (1− hi`)′

1− hi`
−

(1− hkj)′

1− hkj
= −κ(〈ψi, ζ〉+ 〈ζ, ψj〉)− κ(〈ψk, ζ〉+ 〈ζ, ψ`〉)

+ κ(〈ψi, ζ〉+ 〈ζ, ψ`〉) + κ(〈ψk, ζ〉+ 〈ζ, ψj〉)
= 0.

�

3. Description of main results

In this section, we briefly discuss our main results in the collective synchronous behaviors
of the GPL system. First, we recall definitions of complete and practical synchronizations
as follows.

Definition 3.1. Let ψj be a solution to (1.2) and T ∈ (0,∞).

(1) System (1.2) exhibits complete synchronization, if L2-distances between wave func-
tions tend to zero asymptotically:

lim
t→∞

max
i,j
‖ψi(t)− ψj(t)‖ = 0.

(2) System (1.2) exhibits practical synchronization in finite time interval [0, T ], if

lim
κ→+∞

sup
0≤t≤T

max
i,j
‖ψi(t)− ψj(t)‖ = 0.

Remark 3.1. Note that for wave functions ψj with ‖ψj‖ = 1, one has

‖ψi − ψj‖2 = 2Re(1− hij) ≤ 2|1− hij |, hij := 〈ψi, ψj〉.

Thus, defining relations can be paraphrased in terms of hij:

Complete synchronization ⇐⇒ lim
t→∞

max
i,j
|1− hij(t)| = 0.

Practical synchronization ⇐⇒ lim
κ→+∞

sup
0≤t≤T

max
i,j
|1− hij(t)| = 0.

Before we present the synchronization estimates, we show that (1.2) admits a global
unique solution. For global well-posedness, we introduce the energy space associated with
(1.2):

XH :=
{
u ∈ H1(Rd) : x 7→ |x|u(x) ∈ L2(Rd)

}
.

Theorem 3.1. Suppose that

1 ≤ d ≤ 3, βjk > 0, ψ0
j ∈ XH , for all j, k = 1, · · · , N .

Then, (1.2) has a global unique solution: for any T > 0,

ψj ∈ C([0, T ];XH) ∩ L∞([0, T ];H1(Rd)) ∩ L
8
d ([0, T ];L4(Rd)), j = 1, · · · , N.

Proof. We provide its proof in Appendix A. �
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3.1. Two-component GPL system. In this section, we present synchronization estimate
for the GPL system under the same harmonic external potential. For simplicity, we set

d = 1, N = 2, V (x) =
ω2

2
x2, x ∈ R, ω > 0, A = J2, h(t) := 〈ψ1, ψ2〉(t), t ≥ 0.

Under this setting, system (1.2) becomes
i∂tψ1 = −1

2
∂xxψ1 +

1

2
ω2x2ψ1 + β11|ψ1|2ψ1 + β12|ψ2|2ψ1 +

iκ

4
(ψ2 − h(t)ψ1) ,

i∂tψ2 = −1

2
∂xxψ2 +

1

2
ω2x2ψ2 + β21|ψ1|2ψ2 + β22|ψ2|2ψ2 +

iκ

4

(
ψ1 − h̄(t)ψ2

)
,

(ψ1, ψ2)(x, 0) = (ψ0
1(x), ψ0

2(x)), (x, t) ∈ R× R+, ‖ψ0
1‖ = ‖ψ0

2‖ = 1.

(3.1)

For a solution (ψ1, ψ2) to (3.1), we define several dynamic quantities:

xjc(t) :=

∫
R
x|ψj(x, t)|2dx, xc(t) := x1

c(t) + x2
c(t), j = 1, 2, t ≥ 0,

P jc (t) :=

∫
R

Im
(
ψ̄j(x, t)∇ψj(x, t)

)
dx, Pc(t) := P 1

c (t) + P 2
c (t),

ψd(x, t) := ψ1(x, t)− ψ2(x, t), (x, t) ∈ R× R+,

xd(t) :=

∫
R
x|ψd(x, t)|2dx, Pd(t) :=

∫
R

Im(ψ̄d(x, t)∇ψd(x, t))dx.

(3.2)

Next, we state our first main result of this section without the proof.

Theorem 3.2. Suppose that the system parameters and the initial data satisfy

B = βJ2, 〈ψ0
1, ψ

0
2〉 6= −1, (3.3)

and let (ψ1, ψ2) be a global solution to (3.1). Then, the following assertions hold.

(1) The complete synchronization emerges:

lim
t→∞
‖ψ1(t)− ψ2(t)‖ = 0.

(2) The center-of-mass xc approaches to the periodic harmonic motion asymptotically:
there exist positive constants α1 and α2 such that

lim
t→∞
|xc(t)− (α1 cosωt+ α2 sinωt)| = 0.

Proof. (i) Note that the relation (3.1)1 × ψ̄2 − (3.1)2 × ψ1 yields

ḣ =
κ

2
(1− h2), t > 0. (3.4)

Then, (3.4) can be solved as

h(t) =
(1 + h0)eκt − (1− h0)

(1− h0) + (1 + h0)eκt
, t > 0, h(0) = h0. (3.5)

Hence, since the initial data satisfy h0 6= −1, it follows from the explicit formula (3.5) that

lim
t→∞

h(t) = 1.

(ii) The second assertion will be proved in the following two steps:
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• (Step A): First, we derive the dynamics of (xc, Pc) and (xd, Pd) introduced in (3.2).

• (Step B): We use preparatory lemmas and the assumption (3.3) to study the dy-
namics of (xc, Pc, xd, Pd).

We leave the rigorous justification of the steps above in Section 4. �

3.2. Multi-component GPL system. Below, we begin with several notation.

(1) For the network structure A = (ajk), we define the minimum average and the
maximal difference:

‖A‖∞ := max
j,k
|ajk|, dav

j (A) :=
1

N

N∑
k=1

ajk, δ(A) := max
k

(
max
j,l
|ajk − alk|

)
.

(2) For the interaction matrix B = (βij) which is a perturbation of a constant matrix
βJN , we set

R(B) := max
i 6=j
|βij − β|, δ(B) := max

k

(
max
j,l
|βjk − βlk|

)
.

(3) For the external one-body potential {Vj}, we introduce a distance in L∞-norm:

D(V ) := max
i,j
‖Vi − Vj‖∞.

In what follows, we present our main results according to the type of interaction matrix
B = (βij). As mentioned in Remark 3.1, it suffices to estimate the terms 1 − hij . Our
second main result corresponds to

B = βJN , β > 0.

In this case, we expect that the complete synchronization can occur. For this, we define the
synchronization functional as the maximum of 1− hij :

S(H(t)) := max
i,j
|1− hij(t)|, t ≥ 0

Then, since S(H) is Lipschitz continuous, it is differentiable almost everywhere. For nota-
tional simplicity, we set

λ(A) := min
j
dav
j (A)− δ(A).

Theorem 3.3. (Fully identical interactions) Suppose that system parameters, interaction
matrix, network topology and the initial data satisfy

κ > 0, D(V ) = 0, B = βJN , λ(A) > 0, S(H0) <
λ(A)

‖A‖∞
, (3.6)

and let ψj be a global smooth solution to (2.3) with ‖ψ0
j ‖ = 1. Then, we have the complete

synchronization with exponential decay rate:

S(H(t)) ≤ O(1)e−κλ(A)t, t ≥ 0.

Proof. We postpone its detailed proof in Section 5.1. �
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Remark 3.2. Note that we do not require all ajk to be positive unlike the setting in [36] for
the Schrödinger-Lohe system. In fact, some of ajk can take negative values. For instance,
the following network topology is admissible:

A =


1 1 · · · 1 −1

1 1 · · · 1 −1
...

...
. . .

...
...

1 1 · · · 1 −1

 .

Then, for A, we have

davi (A) =
N − 2

N
= 1− 2

N
, for i = 1, · · · , N and δ(A) = 0.

One can check that this network structure fits in our setting (3.6)4:

λ(A) = min
j
dav
j (A)− δ(A) = 1− 2

N
> 0.

Next, we move on to the weakly interacting case:

B = βJN + diag(ε1, · · · , εN ) : which is a perturbation of a constant matrix βJN .

In this case, we derive the practical synchronization estimate. For notational simplicity, we
set

Σ := (ε1, · · · , εN ), D(Σ) := max
i,j
|εi − εj |, ‖Σ‖∞ := max

i
|εi|.

Theorem 3.4. (Weakly identical interactions) Suppose that system parameters, interaction
matrix, network topology and the initial data satisfy

T ∈ (0,∞), κ > 0, λ(A) > 0, D(V ) < D(Σ), ‖Σ‖∞ <
|λ(A)|2

16‖A‖∞(1 +M(T )2)
κ,

S(H0) <

κλ(A) +

√(
κλ(A)

)2 − 8κ‖A‖∞‖Σ‖∞
(

2M(T )3 +M(T )2 + 1
)

2κ‖A‖∞
,

(3.7)

and let ψj be a global smooth solution to (2.3) satisfying a priori condition:

sup
0≤t≤T

max
j
‖ψj(t)‖4 ≤M(T ) <∞.

Then, we have a practical synchronization on the finite interval [0, T ):

sup
0≤t≤T

S(H(t)) ≤ O(1)

‖Σ‖∞
(

2M(T )3 +M(T )2 + 1
)

κλ(A)

 . (3.8)

Proof. The detailed proof will be given in Section 5.2. �

Remark 3.3. Note that the result of Theorem 3.4 does not depend on the value of β, and
the estimate (3.8) yields practical synchronization estimate in Definition 3.1:

lim
κ→∞

sup
0≤t≤T

S(H(t)) = 0, for any T ∈ (0,∞).
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Finally, we consider the heterogeneous case:

B =


β β12 · · · β1N

β21 β · · · β2N

...
...

. . .
...

βN1 βN2 · · · β

+ diag(ε1, · · · , εN ).

For notational simplicity, we set

G := 2M(T )4
(
R(B) + ‖Σ‖∞ + δ(B)

)
+D(V ). (3.9)

Theorem 3.5. (heterogeneous interactions) Suppose that system parameters, interaction
matrix, network topology and the initial data satisfy

λ(A) > 0, κ >
4G‖Σ‖∞
(λ(A))2

, S(H0) <
κλ(A) +

√
(κλ(A))2 − 4κG‖Σ‖∞
2κ‖Σ‖∞

, (3.10)

and let ψj be a global smooth solution to (2.3) satisfying a priori condition:

sup
0≤t≤T

max
j
‖ψj(t)‖4 ≤M(T ) <∞.

Then, we have

sup
0≤t≤T

S(H(t)) ≤ 2G

κλ(A)
.

Proof. We present its proof in Section 5.3. �

4. A two-component GPL system

In this section, we provide a proof of Theorem 3.2. For this, we provide dynamics of
quantities introduced in (3.2).

4.1. Preparatory lemmas. Below, we provide three lemmas to be used in the proof of
Theorem 3.2. First, we set R(t) to be a real part of h(t) := 〈ψ1(t), ψ2(t)〉:

R(t) := Reh(t), t ≥ 0.

Lemma 4.1. Let (ψ1, ψ2) be a global smooth solution to (3.1). Then, (xc, Pc) defined in
(3.2) satisfies the following dynamics:ẋc =

κ

2
(1−R)xc + Pc −

κ

2
xd, t > 0,

Ṗc = −ω2xc +
κ

2
(1−R)Pc −

κ

2
Pd.

(4.1)
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Proof. • Derivation of dynamics of xc: We use the identity (2.4) and defining relations (3.2)
to see

ẋc =
d

dt

∫
R

(
x|ψ1|2 + x|ψ2|2

)
dx = 2

∫
R
x
[
Re(∂tψ̄1 · ψ1) + xRe(∂tψ̄2 · ψ2)

]
dx

= 2

∫
R
xRe

[
− i

2
∆ψ̄1ψ1 +

i

2
ω2x2|ψ1|2 + iβ11|ψ1|4 + iβ12|ψ2|2|ψ1|2

]
dx

+ 2

∫
R
xRe

[
− i

2
∆ψ̄2ψ2 +

i

2
ω2x2|ψ2|2 + iβ21|ψ1|2|ψ2|2 + iβ22|ψ2|4

]
dx

+
κ

2

(∫
R
xRe

(
ψ1ψ̄2 − h̄|ψ1|2

)
+ xRe(ψ̄1ψ2 − h|ψ2|2)dx

)
=: I31 + I32 + I33.

(4.2)

Below, we consider I3k, k = 1, 2, 3, separately.

� (Estimate of I31): Since ω, β11 and β12 are real, we see

I31 = 2

∫
R
xRe

[
− i

2
∆ψ̄1ψ1 +

i

2
ω2x2|ψ1|2 + iβ11|ψ1|4 + iβ12|ψ2|2|ψ1|2

]
dx

=

∫
R

Re(−ix∆ψ1ψ1) dx =

∫
R

Re(i∇(xψ1) · ∇ψ̄1) dx =

∫
R

Re(iψ1∇ψ̄1)

=

∫
R

Im(ψ̄1∇ψ1) dx = P 1
c .

(4.3)

� (Estimate of I32): Similarly, since β21 and β22 are also real, we have

I32 =

∫
R

Im(ψ̄2∇ψ2) dx = P 2
c . (4.4)

� (Estimate of I33) Recall the identity (2.8) to see

2Re(ψ̄1ψ2) = |ψ1|2 + |ψ2|2 − |ψ1 − ψ2|2.

Hence, we find

κ

2

(∫
R
xRe

(
ψ1ψ̄2 − h̄|ψ1|2

)
+ xRe(ψ̄1ψ2 − h|ψ2|2)dx

)
= κ

∫
R
xRe(ψ1ψ̄2) dx− κR

2

(∫
R
x|ψ1|2 + x|ψ2|2 dx

)
=
κ

2

∫
R

(
x|ψ1|2 + x|ψ2|2 − x|ψ1 − ψ2|2

)
dx− κR

2
xc

=
κ

2
xc −

κ

2
xd −

κR

2
xc.

(4.5)

In (4.2), we combine the estimates (4.3),(4.4) and (4.5) to obtain the desired equation (4.1)1:

ẋc =
κ

2
(1−R)xc + Pc −

κ

2
xd.
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• Derivation of dynamics of Pc: We again use the defining relations (3.2) to get

Ṗ 1
c =

d

dt

∫
R

Im(ψ̄1∇ψ1) dx =

∫
R

Im(∂tψ̄1∇ψ1 + ψ̄1∂t∇ψ1) dx

=

∫
R

Im

[(
− i

2
∆ψ̄1 +

i

2
ω2x2ψ̄1 + iβ11|ψ1|2ψ̄1 + iβ12|ψ2|2ψ̄1

)
∇ψ1

]
dx

+

∫
R

Im

[(
− i

2
∇∆ψ1 + i∇

(
ω2

2
x2ψ1

)
+ iβ11∇(|ψ1|2ψ1) + iβ12∇(|ψ2|2ψ1)

)
ψ̄1

]
+
κ

4

∫
R

Im
(
ψ̄2∇ψ1 − h̄ψ̄1∇ψ1 + ψ̄1∇ψ2 − hψ̄1∇ψ1

+ ψ̄1∇ψ2 − h̄ψ̄2∇ψ2 + ψ̄2∇ψ1 − hψ̄2∇ψ2

)
dx

=

∫
R

Im

(
− i

2
∆ψ̄1∇ψ1 −

i

2
∆∇ψ1ψ̄1

)
dx+

∫
R

Im

(
i

2
ω2x2ψ̄1∇ψ1 + i∇

(
ω2

2
x2ψ1

)
ψ̄1

)
dx

+

∫
R

Im
(

iβ11|ψ1|2ψ̄1∇ψ1 + iβ11∇(|ψ1|2ψ1)ψ̄1

)
+

∫
R

Im
(

iβ12|ψ2|2ψ̄1∇ψ1 + iβ12∇(|ψ2|2ψ1)ψ̄1

)
+
κ

4

∫
R

Im
(
ψ̄2∇ψ1 − h̄ψ̄1∇ψ1 + ψ̄1∇ψ2 − hψ̄1∇ψ1

)
dx

=: I41 + I42 + I43 + I44 + I45.

Below, we provide the estimates of I4k, k = 1, · · · , 5, respectively.

� (Estimate of I41): By direct calculation,

I41 =

∫
R

Im

(
− i

2
∆ψ̄1∇ψ1 −

i

2
∇∆ψ1ψ̄1

)
dx =

∫
R

Im

(
− i

2
∆ψ̄1∇ψ1 +

i

2
∆ψ1∇ψ̄1

)
dx

= 0,

where we used the fact that the second term is the complex conjugate of the first term.

� (Estimate of I42): Note that one has

I42 =

∫
R

Im

(
i

2
ω2x2ψ̄1∇ψ1 + i∇

(
ω2

2
x2ψ1

)
ψ̄1

)
dx

=

∫
R

Im

(
i

2
ω2x2ψ̄1∇ψ1 + iωx|ψ1|2 +

i

2
ω2x2∇ψ1ψ̄1

)
dx

= −ω2

∫
R
x|ψ1|2 = −ω2x1

c .
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� (Estimate of I43 + I44): From straightforward calculation,

I43 + I44 =

∫
R

Im
(

iβ11|ψ1|2ψ̄1∇ψ1 + iβ11∇(|ψ1|2ψ1)ψ̄1

)
+

∫
R

Im
(

iβ12|ψ2|2ψ̄1∇ψ1 + iβ12∇(|ψ2|2ψ1)ψ̄1

)
=

∫
R

Im
(

iβ11∇(|ψ1|4) + iβ12∇(|ψ1|2|ψ2|2)
)

= 0.

� (Estimate of I45): Note that the following identity holds:

ψ̄2∇ψ1 + ψ̄1∇ψ2 = ψ̄1∇ψ1 + ψ̄2∇ψ2 − ψ̄d∇ψd.

Then, we have

I45 =
κ

4

∫
R

Im
(
ψ̄2∇ψ1 − h̄ψ̄1∇ψ1 + ψ̄1∇ψ2 − hψ̄1∇ψ1

)
dx

= −κ
4

(h̄+ h)P 1
c +

κ

4

∫
R

Im
(
ψ̄2∇ψ1 + ψ̄1∇ψ2

)
dx

= −κ
2
RP 1

c +
κ

4
(Pc − Pd).

Hence, we combine all estimates to find

Ṗ 1
c = ω2x1

c −
κ

2
RP 1

c +
κ

4
(Pc − Pd). (4.6)

Similarly, we have

Ṗ 2
c = ω2x2

c −
κ

2
RP 2

c +
κ

4
(Pc − Pd). (4.7)

Finally, we add (4.6) and (4.7) to yield the desired equation (4.1)2.

Ṗc = −ω2xc −
κ

2
RPc +

κ

2
(Pc − Pd) = −ω2xc +

κ

2
(1−R)Pc −

κ

2
Pd.

�

Remark 4.1. 1. If κ = 0, (4.1) reduces to the harmonic oscillator case:

ẋc = Pc, Ṗc = −ω2xc; or equivalently ẍc + ω2xc = 0. (4.8)

Then, (4.8) can be explicitly solved as

xc(t) = xc(0) cosωt+
ẋc(0)

ω
sinωt, t ≥ 0,

which is a periodic harmonic motion with a period ω.

2. Note that system (4.1) does not depend on the choice of βij and is not closed, as it
contains (xd, Pd). To close the hierarchy, we consider the identical case:

β11 = β12 = β21 = β22 =: β or B = βJ2, (4.9)

and derive the dynamics for (xd, Pd) in the following lemma.
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Lemma 4.2. Let (ψ1, ψ2) be a global smooth solution to (3.1) with B = βJ2. Then, (xd, Pd)
satisfies the following dynamics:ẋd = −κ

2
(1 +R)xd + Pd, t > 0,

Ṗd = −ω2xd −
κ

2
(1 +R)Pd.

Proof. First, note that ψd satisfies

i∂tψd = −1

2
∆ψd +

ω2

2
x2ψd + β(|ψ1|2 + |ψ2|2)ψd +

iκ

4

(
(1 + h̄)ψ2 − (1 + h)ψ1

)
. (4.10)

• Derivation of dynamics of xd: We use (2.4) and (4.10) to get

ẋd =
d

dt

∫
R
x|ψd|2dx = 2

∫
R
xRe(∂tψ̄d · ψd)dx

= Pd +
κ

2

∫
R
xRe

(
− (1 + h)|ψ2|2 − (1 + h̄)|ψ1|2 + (1 + h̄)ψ̄1ψ2 + (1 + h)ψ̄2ψ1

)
dx

= Pd −
κ

2
(1 +R)xc +

κ

2
(1 +R)(xc − xd)

= Pd −
κ

2
(1 +R)xd.

• Derivation of dynamics of Pd: Similar to the estimate of xd, we have

Ṗd =

∫
R

Im
(
∂tψ̄d∇ψd + ψ̄d∂t∇ψd

)
dx

= −ω2xd +
κ

4

∫
R

Im
(

(1 + h)ψ̄2 − (1 + h̄)ψ̄1

)
(∇ψ1 −∇ψ2)

+ Im(ψ̄1 − ψ̄2)
(

(1 + h̄)∇ψ2 − (1 + h)∇ψ1

)
dx

= −ω2xd −
κ

2
(1 +R)Pc +

κ

2
(1 +R)(Pc − Pd)

= −ω2xd −
κ

2
(1 +R)Pd.

�

Next, we provide an explicit solution formula for the following two-dimensional system:
ẋ = f(t)x+ py + g1(t), t > 0,

ẏ = −qx+ f(t)y + g2(t),

(x, y)(0) = (x0, y0).

(4.11)

To rewrite (4.11) in a compact form, we set

Z(t) :=

x(t)

y(t)

 , A(t) :=

f(t) p

−q f(t)

 , G(t) :=

g1(t)

g2(t)

 .

Then, (4.11) can be rewritten as a matrix form:{
Ż(t) = A(t)Z(t) +G(t), t > 0,

Z(0) = (x0, y0).
(4.12)
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Lemma 4.3. Suppose that p and q are positive constants and f : R+ → R+ is a continuous
time-dependent function. Then, the solution (x(t), y(t)) is given by the following explicit
formula:x(t)

y(t)

 =

e∫ t0 f(s)ds 0

0 e
∫ t
0 f(s)ds

 cos(
√
pqt)

√
p
q sin(

√
pqt)

−
√

q
p sin(

√
pqt) cos(

√
pqt)

x0

y0


+ e

∫ t
0 A(s)ds

∫ t

0
e−
∫ s
0 A(τ)dτG(s)ds, t ≥ 0.

Proof. Since the proof is lengthy, we postpone its proof in Appendix B. �

4.2. Proof of Theorem 3.2. Now, we are ready to provide the proof of Theorem 3.2 in
two steps.

• Step A (Derivation of explicit formula for (xd, Pd)): Consider the dynamical system for
(xd, Pd): ẋd = −κ

2
(1 +R)xd + Pd, t > 0,

Ṗd = −ω2xd −
κ

2
(1 +R)Pd.

We set
f(t) = −κ

2
(1 +R(t)), p = 1, q = ω2, G(t) = 0,

and apply Lemma 4.3 to derive a representation relation:xd(t)
Pd(t)

 =

e−κ2 ∫ t0 (1+R(s))ds 0

0 e−
κ
2

∫ t
0 (1+R(s))ds

 cos(ωt) 1
ω sin(ωt)

−ω sin(ωt) ω cos(ωt)

x0
d

P 0
d


=

 cos(ωt)e−
κ
2

∫ t
0 (1+R(s))ds 1

ω sin(ωt)e−
κ
2

∫ t
0 (1+R(s))ds

−ω sin(ωt)e−
κ
2

∫ t
0 (1+R(s))ds ω cos(ωt)e−

κ
2

∫ t
0 (1+R(s))ds

x0
d

P 0
d

 .

(4.13)

• Step B (Derivation of explicit formula for (xc, Pc)): Together with the representation
formula for (xd, Pd), we use Lemma 4.3 to derive representation explicit formula for (4.1).
To do this, we write (4.1) into compact form:{

Ẇ (t) = E(t)W (t)− κ

2
Y (t), t > 0,

W (0) = (x0
c , P

0
c ),

(4.14)

where W,E and Z are defined as follows:

W (t) :=

xc(t)
Pc(t)

 , E(t) :=

κ
2 (1−R(t)) 1

−ω2 κ
2 (1−R(t))

 , Y (t) :=

xd(t)
Pd(t)

 .

Since (4.14) has the same form of (4.12), it follows from Lemma 4.3 that

W (t) = W (0)e
∫ t
0 E(s)ds − κ

2
e−
∫ t
0 E(s)ds

∫ t

0
e
∫ s
0 E(τ)dτY (s)ds.
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Following the argument in Lemma 4.3, we calculate e
∫ t
0 E(s)ds as follows:

e
∫ t
0 E(s)ds =

eκ2 ∫ t0 (1−R(s))ds 0

0 e
κ
2

∫ t
0 (1−R(s))ds

 cos(ωt) sin(ωt)

−ω sin(ωt) ω cos(ωt)

.
We again apply Lemma 4.3 to obtainxc(t)
Pc(t)

 = e
∫ t
0 E(s)dsW0 + e

∫ t
0 E(s)ds

 x0d
κ

(
1− e−κt

)
P 0
d
κ

(
1− e−κt

)


=

 cos(ωt)e
κ
2

∫ t
0 (1−R(s))ds sin(ωt)e

κ
2

∫ t
0 (1−R(s))ds

−ω sin(ωt)e
κ
2

∫ t
0 (1−R(s))ds ω cos(ωt)e

κ
2

∫ t
0 (1−R(s))ds

 x0
c +

x0d
κ (1− e−κt)

P 0
c +

P 0
d
κ (1− e−κt)

 .

On the other hand, it follows from the explicit formula (3.5) that 1−R(t) converges to zero
with exponential rate:

1−R(t) = Re(1− h(t)) =
2|1− h0|2 + 2(1− |h0|2)eκt

|1− h0|2 + 2(1− |h0|2)eκt + |1 + h0|2e2κt
,

≤ 2|1− h0|2

|1 + h0|2
e−2κt +

2(1− |h0|2)

|1 + h0|2
e−κt.

Hence, if we set

J (t) := exp

(
κ

2

∫ t

0

(
1−R(s)

)
ds

)
, t ≥ 0.

then the limit of J (t) exists:
J∞ := lim

t→∞
J (t).

Now, we write an explicit formula for xc(t):

xc(t) =

(
x0
c +

x0
d

κ
(1− e−κt)

)
J (t) cos(ωt) +

(
P 0
c +

P 0
d

κ
(1− e−κt)

)
J (t) sin(ωt). (4.15)

Therefore, we can conclude that there exist positive constants α1 and α2 depending on
initial data and system parameters such that

lim
t→∞

∣∣∣xc(t)− (α1 cos(ωt) + α2 sin(ωt)
)∣∣∣ = 0,

where α1 and α2 are defined as

α1 := x0
c +

x0
d

κ
J∞, α2 := P 0

c +
P 0
d

κ
J∞.

This completes the proof of the second assertion in Theorem 3.2.

Remark 4.2. 1. Suppose that h0 = 〈ψ0
1, ψ

0
2〉 ∈ R. Then, the explicit formula (3.5) yields

1−R(t) =
2(1− h0)

(1− h0) + (1 + h0)eκt
.

From straightforward calculation, we have∫ ∞
0

(
1−R(t)

)
dt =

∫ ∞
0

2(1− h0)

(1− h0) + (1 + h0)eκt
dt =

2

κ
log

2

1 + h0
.
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This yields

J∞ = lim
t→∞
J (t) =

(
2

1 + h0

) 2
κ

.

In this case, we can find explicit values of (α1, α2):

α1 = x0
c +

x0
d

κ

(
2

1 +R0

) 2
κ

, α2 = P 0
c +

P 0
d

κ

(
2

1 +R0

) 2
κ

. (4.16)

2. Consider the symmetric initial data such that

ψ0
1 =M(x− x0), ψ0

2 =M(x+ x0),

where M(z) is defined to be the Gaussian function with mean zero, i.e.,

M(z) :=
1√
2π
e−

1
2
z2 , z ∈ R.

Then, we can easily check that

R0 := Re〈ψ0
1, ψ

0
2〉, x0

c = x0
d = P 0

c = P 0
d = 0.

Hence, it follows from our explicit formula (4.15) and (4.16) that

xc(t) ≡ 0, t > 0.

As a direct application of the previous results, we have the following corollary.

Corollary 4.1. Let (ψ1, ψ2) be a global smooth solution of (3.1) with initial data (ψ0
1, ψ

0
2)

and condition (4.9). Then, the following assertions hold:

lim
t→∞

xd(t) = 0 and lim
t→∞

∣∣∣∣∫
R
x|ψ1(x, t)|2dx−

∫
R
x|ψ2(x, t)|2dx

∣∣∣∣ = 0. (4.17)

Proof. (i) For the first assertion, the explicit formula (4.13) gives

xd(t) = x0
d cos(ωt)e−

κ
2

∫ t
0 (1+R(s))ds +

P 0
d

ω
sin(ωt)e−

κ
2

∫ t
0 (1+R(s))ds. (4.18)

Our claim is that

lim
t→∞

e−
κ
2

∫ t
0 (1+R(s))ds = 0. (4.19)

Since we know that R(t) converges to 1, there exists a finite time T0 such that

1 +R(t) >
3

2
for t > T0.

Hence, one has

e
−κ

2

∫ t
T0

(1+R(s))ds
< e−

3
2

(t−T0), t > T0.

This shows our claim. In (4.18), we use (4.19) to establish the first assertion.

(ii) From the first assertion, we have

lim
t→∞

xd(t) = 0 or equivalently lim
t→∞

∫
R
x|ψ1(x, t)− ψ2(x, t)|2dx = 0, (4.20)
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and (4.20) can be written as

lim
t→∞

∫ ∞
0

x
(
|ψ1(x, t)− ψ2(x, t)|2 − |ψ1(−x, t)− ψ2(−x, t)|2

)
dx = 0,

where we used
∫∞
−∞ =

∫∞
0 +

∫ 0
−∞ and the change of variable in the second integral. Then,

it follows from the positivity of integrand in the above relation that we have∫ ∞
0

x|ψ1(x, t)− ψ2(x, t)|2dx ≤ xd(t),
∫ ∞

0
x|ψ1(−x, t)− ψ2(−x, t)|2dx ≤ xd(t),∫

R
x
(
|ψ1(x, t)|2 − |ψ2(x, t)|2

)
dx

=

∫ ∞
0

x
(
|ψ1(x, t)|2 − |ψ2(x, t)|2

)
+ x
(
|ψ2(−x, t)|2 − |ψ1(−x, t)|2

)
dx.

(4.21)

On the other hand, note that∫ ∞
0

x
(
|ψ1(x, t)|2 − |ψ2(x, t)|2

)
dx

=

∫ ∞
0

√
x
(
|ψ1(x, t)| − |ψ2(x, t)|

)√
x
(
|ψ1(x, t)|+ |ψ2(x, t)|

)
dx

≤
∫ ∞

0

√
x|ψ1(x, t)− ψ2(x, t)|

√
x
∣∣|ψ1(x, t)|+ |ψ2(x, t)|

∣∣dx
≤
(∫ ∞

0
x|ψ1(x, t)− ψ2(x, t)|2dx

) 1
2
(∫ ∞

0
2x
(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx

) 1
2

≤
√

2xd(t)xc(t),

(4.22)

where we used the following triangle inequality in the first inequality: for u, v ∈ C,∣∣|u| − |v|∣∣ ≤ |u− v|.
By the same argument, we also find∫ ∞

0
x
(
|ψ2(−x, t)|2 − |ψ1(−x, t)|2

)
dx ≤

√
2xd(t)xc(t). (4.23)

We collect (4.21), (4.22) and (4.23) to conclude that∫
R
x
(
|ψ1(x, t)|2 − |ψ2(x, t)|2

)
dx ≤ 2

√
2xd(t)xc(t).

Since xd(t) tends to zero and xc(t) is uniformly bounded in time, we obtain the desired
convergence (4.17). �

Remark 4.3. It follows from Theorem 3.2 and Corollary 4.1 that

lim
t→∞

∣∣∣∣xjc(t)− (1

2
α1 cos(ωt) +

1

2
α2 sin(ωt)

)∣∣∣∣ = 0, j = 1, 2.
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5. The multi-component GPL system

In this section, we study emergent dynamics to the multi-component GPL system. In
the following three subsections, we will provide proofs for Theorems 3.3, 3.4 and 3.5. For
this, we basically use the two-point correlation approach based on hij using the explicit
dynamics given in Lemma 2.2. Before we present our estimates, we introduce the following
Grönwall-type lemma.

Lemma 5.1. Let y = y(t) be a nonnegative C1-function satisfying the following Riccati-type
differential inequality:

ẏ ≤ −py + qy2 + r, p, q, r > 0, t > 0. (5.1)

(1) Suppose that r = 0. Then, y satisfies the following estimate:

y(t) ≤ 1(
1
y(0) −

q
p

)
ept + q

p

, t ≥ 0.

(2) Suppose that

r > 0, p2 − 4qr > 0 and y(0) < y+.

Then, there exists a finite entrance time T∗ such that

y(t) < y−, t > T∗,

where y± are two distinct positive roots of the quadratic equation qy2 − py + r = 0:

y− :=
p−

√
p2 − 4qr

2q
, y+ :=

p+
√
p2 − 4qr

2q
.

Proof. (i) We set u = 1/y, derive the inequality for u and integrate the resulting relation
to find the desired estimate.

(ii) For the proof of the second assertion, we split the proof into two cases:

Either y(0) ≤ y− or y− < y(0) < y+.

� Case A: Suppose that y(0) ∈ (0, y−]. For the time t = T such that y(T ) = y−, it follows
from (5.1) that

d

dt
y(t)

∣∣∣
t=T
≤ 0.

This yields that y(t) is non-increasing at time t = T . Hence, y(t) is restricted in the interval
[0, y−] for all time. Hence, one has

y(t) ≤ y−, t ≥ 0.

� Case B: Suppose that y(0) ∈ (y−, y+). Since the initial datum belong to this region, we
know that y(t) starts to decrease strictly. Then, it follows from Proposition 3.1 in [22] that
there exists a finite entrance time T∗ such that

y(t) < y−, t ≥ T∗.

Finally, we combine Cases A and B to complete the proof. �
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5.1. Complete synchronization. First, we recall the setting for the complete synchro-
nization in Theorem 3.3.

κ > 0, D(V ) = 0, B = βJN , λ(A) > 0, S(H0) <
λ(A)

‖A‖∞
.

Then, it follows from Lemma 2.2 that

d

dt
(1− hij) = −κ

2
(dav
i (A) + dav

j (A))(1− hij)

+
κ

2N

N∑
k=1

(
aik(1− hik)(1− hij) + ajk(1− hkj)(1− hij)

+ (aik − ajk)
(
(1− hkj)− (1− hik)

))
.

(5.2)

We multiply (5.2) with 1− h̄ij and take real parts of both sides to obtain

1

2

d

dt
|1− hij |2 = −κ

2
(dav
i (A) + dav

j (A))|1− hij |2

+
κ

2N

N∑
k=1

Re
(
aik(1− hik)|1− hij |2 + ajk(1− hkj)|1− hij |2

+ (aik − ajk)
(
(1− hkj)− (1− hik)

)
(1− h̄ij)

)
.

For each time t, we choose the indices (it, jt) such that

S(H(t)) := |1− hitjt(t)|, t ≥ 0.

Then, S(H(t)) satisfies the differential inequality:

d

dt
S(H(t)) ≤ −κλ(A)S(H(t)) + κ‖A‖∞S(H(t))2, t > 0.

Finally, we use Lemma 5.1 to derive exponential decay of S(H(t)):

S(H(t)) ≤ 1(
1

S(H0)
− λ(A)
‖A∞‖

)
eκλ(A)t + λ(A)

‖A∞‖

≤ O(1)e−κλ(A)t.

This shows the desired exponential decay of S(H) and completes the proof of Theorem 3.3.

5.2. Practical synchronization I. Let ψj = ψj(x, t) be a global smooth solution to (2.3)
satisfying a priori condition,

sup
0≤t≤T

max
j
‖ψj(t)‖4 ≤M(T ) <∞.

and framework:

T ∈ (0,∞), κ > 0, λ(A) > 0, D(V ) < D(Σ), ‖Σ‖∞ <
κλ(A)

16‖A‖∞(1 +M(T )2)
,

S(H0) <

κλ(A) +

√(
κλ(A)

)2 − 8κ‖A‖∞‖Σ‖∞
(

2M(T )4 + 1
)

2κ‖A‖∞
.
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Under the setting above, we again use Lemma 2.2 to get

1

2

d

dt
|1− hij |2

= −κ
2

(dav
i (A) + dav

j (A))|1− hij |2 + Re

(
i(1− h̄ij)

∫
Rd

(Vi − Vj)ψiψ̄jdx
)

︸ ︷︷ ︸
=:I51

+ Re

(
i(1− h̄ij)

∫
Rd

(εj |ψj |2 − εi|ψi|2)ψiψ̄jdx

)
︸ ︷︷ ︸

=:I52

+
κ

2N

N∑
k=1

Re
(
aik(1− hik)|1− hij |2 + ajk(1− hkj)|1− hij |2

+ (aik − ajk)((1− hkj)− (1− hik))(1− h̄ij)
)
.

(5.3)

Note that the terms in the R.H.S. of (5.3) other than I51 and I52 are already treated in
Section 5.1. Hence, we focus on the terms I5i, i = 1, 2 as follows.

• (Estimate of I51): We use ‖ψi‖ = 1 and |1− h̄ij | = |1− hij | to see

|I51| =
∣∣∣∣Re

(
i(1− h̄ij)

∫
Rd

(Vi − Vj)ψiψ̄jdx
)∣∣∣∣ ≤ D(V )|1− hij |. (5.4)

• (Estimate of I52): Note that∫
Rd

(εj |ψj |2 − εi|ψi|2)ψiψ̄jdx = εj

∫
Rd

(|ψj |2 − |ψi|2)ψiψ̄jdx+ (εj − εi)
∫
Rd
|ψi|2ψiψ̄jdx

=: I521 + I522.

� (Estimate of I521): Recall the simple inequality∣∣|z1|2 − |z2|2
∣∣ ≤ |z1 − z2|

(
|z1|+ |z2|

)
, z1, z2 ∈ C. (5.5)

Then, we use (5.5) to obtain an estimate of I521 as follows:

|I521| =
∣∣∣∣εj ∫

Rd
(|ψj |2 − |ψi|2)ψiψ̄jdx

∣∣∣∣ ≤ ≤ 2‖Σ‖∞M(T )4, (5.6)

where we used Hölder’s inequality:∣∣∣∣∫
Rd
|f |2|g||h|dx

∣∣∣∣ ≤ (∫
Rd
|f |4dx

) 1
2
(∫

Rd
|g|4dx

) 1
4
(∫

Rd
|h|4dx

) 1
4

= ‖f‖24‖g‖4‖h‖4. (5.7)

� (Estimate of I522): We use (5.7) to find an estimate of I522:

|I522| ≤ D(Σ)M(T )4. (5.8)

Finally, we combine (5.6) and (5.8) to estimate the term I52:

|I52| =
∣∣∣∣Re

(
i(1− h̄ij)

∫
Rd

(ε|ψj |2 − ε|ψi|2)ψiψ̄jdx

)∣∣∣∣ ≤ |1− hij |(|I521|+ I522|)

≤ 2M(T )4‖Σ‖∞|1− hij |+D(Σ)M(T )4|1− hij |.
(5.9)
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In (5.3), we combine (5.4) and (5.9) to derive a differential inequality of S(H):

d

dt
S(H) ≤ −κλ(A)S(H(t)) + κ‖A‖∞S(H(t))2

+ 2M(T )4‖Σ‖∞ +D(Σ)M(T )4 +D(V ), t ∈ (0, T ].
(5.10)

On the other hand, we note that

D(V ) < D(Σ) < 2‖Σ‖∞. (5.11)

Finally, we combine (5.10) and (5.11) to obtain that for t ∈ (0, T ],

d

dt
S(H) ≤ −κλ(A)S(H(t)) + κ‖A‖∞S(H(t))2 + 2‖Σ‖∞

(
2M(T )4 + 1

)
. (5.12)

We now apply Lemma 5.1 for (5.12) with

p := κλ(A), q := κ‖A‖∞, r := 2‖Σ‖∞
(

2M(T )4 + 1
)

to get that there exists a finite time T1 > 0 such that for t > T1,

S(H(t)) <

κλ(A)−
√(

κλ(A)
)2 − 8κ‖A‖∞‖Σ‖∞

(
2M(T )4 + 1

)
2κ‖A‖∞

=
4‖Σ‖∞

(
2M(T )4 + 1

)
κλ(A) +

√(
κλ(A)

)2 − 8κ‖A‖∞‖Σ‖∞
(

2M(T )4 + 1
)

= O(1)

‖Σ‖∞
(

2M(T )4 + 1
)

κλ(A)

 .

This completes the proof of Theorem 3.4.

5.3. Practical synchronization II. Let ψj be a global smooth solution to (2.3) satisfying
a priori condition:

sup
0≤t≤T

max
j
‖ψj(t)‖4 ≤M(T ) <∞,

and recall the framework:

λ(A) > 0, κ >
4G‖Σ‖∞
(λ(A))2

, S(H0) <
κλ(A) +

√(
κλ(A)

)2 − 4κG‖Σ‖∞
2κ‖Σ‖∞

.
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By the same calculation as in (5.3), we have

1

2

d

dt
|1− hij |2

= −κ
2

(dav
i (A) + dav

j (A))|1− hij |2 + Re

(
i(1− h̄ij)

∫
Rd

(Vi − Vj)ψiψ̄jdx
)

+ Re
[
i(1− h̄ij)

∫
Rd

(
(βji − βii)|ψi|2 + (βjj − βij)|ψj |2 +

∑
k 6=i,j

(βik − βjk)|ψk|2
)
ψiψ̄jdx

]
︸ ︷︷ ︸

=:I6

+
κ

2N

N∑
k=1

Re
(
aik(1− hik)|1− hij |2 + ajk(1− hkj)|1− hij |2

+ (aik − ajk)((1− hkj)− (1− hik))(1− h̄ij)
)
.

(5.13)

Note that the only difference between (5.3) and (5.13) is the term I6 which can be estimated
as follows:

I6 =

∫
Rd

(
(βji − βii)|ψi|2 + (βjj − βij)|ψj |2 +

∑
k 6=i,j

(βik − βjk)|ψk|2
)
ψiψ̄jdx

= i(βij − β)

∫
Rd

(|ψi|2 − |ψj |2)ψiψ̄jdx− εi
∫
Rd
|ψi|2ψiψ̄jdx+ εj

∫
Rd
|ψj |2ψiψ̄jdx

+ i
∑
k 6=i,j

∫
Rd

(βik − βjk)|ψk|2ψiψ̄jdx

=: I61 + I62 + I63 + I64.

Below, we present the estimates of I6k, k = 1, 2, 3, 4, respectively.

� (Estimate of I61): We use the inequality (5.5) and follow the same argument in (5.6) to
find

|I61| =
∣∣∣∣i(βij − β)

∫
Rd

(|ψi|2 − |ψj |2)ψiψ̄jdx

∣∣∣∣ ≤ R(B)

∫
Rd

∣∣|ψi|2 − |ψj |2∣∣|ψi||ψj |dx
≤ 2M(T )4R(B).

(5.14)

� (Estimate of I62 + I63): We use a priori estimate (5.12) to get

|I62 + I63| =
∣∣∣∣−εi ∫

Rd
|ψi|2ψiψ̄jdx+ εj

∫
Rd
|ψj |2ψiψ̄jdx

∣∣∣∣ ≤ 2M(T )4‖Σ‖∞.

� (Estimate of I64): Similar to the estimate of I62 + I63, we have

|I64| =

∣∣∣∣∣∣i
∑
k 6=i,j

∫
Rd

(βik − βjk)|ψk|2ψiψ̄jdx

∣∣∣∣∣∣ ≤ 2δ(B)M(T )4. (5.15)
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In (5.13), we combine (5.14)–(5.15) to obtain

d

dt
S(H) ≤ −κλ(A)S(H(t)) + κ‖A‖∞S(H(t))2

+ 2M(T )4(R(B) + ‖Σ‖∞ + δ(B)) +D(V )︸ ︷︷ ︸
=:G

, t ∈ (0, T ],

where we used definition of G in (3.9).

Now we apply Lemma 2.2 with

p := κλ(A), q := κ‖A‖∞, r := G,

to derive that there exists a finite entrance time T2 such that for t > T2,

S(H(t)) ≤
κλ(A)−

√(
κλ(A)

)2 − 4κG‖Σ‖∞
2κ‖Σ‖∞

=
2G

κλ(A) +
√(

κλ(A)
)2 − 4κG‖Σ‖∞

≤ 2G

κλ(A)
.

Therefore, we can obtain the desired estimate and this completes the proof.

6. Numerical simulations

In this section, we propose an efficient and accurate numerical method for discretizing
the GPL system (1.2). Several numerical examples will be carried out and compared with
those analytical results shown in previous sections. Due to the external trapping potential
Vj(x) (j = 1, · · · , N), the wave functions ψj (j = 1, · · · , N) decay exponentially as |x| → ∞.
Therefore, it suffices to truncate the problem (1.2) into a sufficiently large bounded domain
D ⊂ Rd with periodic boundary condition (BC). The bounded domain D is chosen as a box
[a, b]× [c, d]× [e, f ] in 3D, a rectangle [a, b]× [c, d] in 2D, and an interval [a, b] in 1D.

6.1. A time splitting Crank-Nicolson spectral method. Choose ∆t > 0 as the time
step size and denote time steps tn := n∆t for n ≥ 0. From time t = tn to t = tn+1, the
GPL will be solved in three splitting steps. One solves first

i∂tψj = −1

2
∆ψj , x ∈ D, j = 1, · · · , N, (6.1)

with periodic BC on the boundary ∂D for the time step of length ∆t, then solves

i∂tψj = Vjψj +
N∑
k=1

βjk|ψk|2ψj , j = 1, · · · , N, (6.2)

for the same time step, and then solves

i∂tψj =
iκ

2N

N∑
k=1

ajk

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
, j = 1, · · · , N, (6.3)

for the same time step. The linear subproblem (6.1) will be discretized in space by the
Fourier pseudospectral method and integrated in time analytically in the phase space [7,
10, 12, 14]. For the nonlinear subproblem (6.2), it conserves |ψk|2 point-wisely in time, i.e.
|ψk(x, t)|2 ≡ |ψk(x, tn)|2 for tn ≤ t ≤ tn+1 and k = 1, . . . , N [7, 10, 12, 14]. Thus it collapses
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to a linear subproblem and can be integrated in time analytically [7, 10, 12, 14]. For the
nonlinear subproblem (6.3), due to the presence of the Lohe term, it cannot be integrated
analytically (or explicitly) in the way for the standard GPE [7, 10]. Therefore, we will apply
a Crank-Nicolson scheme to further discretize the temporal derivate of (6.3) [11].

To simplify the presentation, we will only present the scheme for 1D. Generation to d > 1
is straightforward for tensor grids. To this end, we choose the spatial mesh size as ∆x = b−a

M
with M a even positive integer, and let the grid points be

x` = a+ `∆x, ` = 0, · · · ,M.

For 1 ≤ j ≤ N denote ψnj,` as the approximation of ψj(x`, tn) (0 ≤ ` ≤ M) and ψnj as

the solution vector with component ψnj,`. Combining the time splitting (6.1)–(6.3) via the

Strang splitting and the Crank-Nicolson scheme for (6.3), a second order Time Splitting
Crank-Nicolson Fourier Pseudospectral (TSCN-FP) method to solve GPL on D reads as:

ψ
(1)
j,` =

M/2−1∑
p=−M/2

e−i∆t µ
2
p/4 (̂ψnj )

p
eiµp(x`−a),

ψ
(2)
j,` = e

−i∆t
(
Vj(x`)+

∑N
k=1 βjk|ψ

(1)
k,` |

2
)
/2
ψ

(1)
j,` ,

i
ψ

(3)
j,` − ψ

(2)
j,`

∆t
=

iκ

2N

N∑
k=1

ajk

[
ψ

( 5
2

)

k,` −
〈
ψ

( 5
2

)

j ,ψ
( 5
2

)

k

〉
∆x〈

ψ
( 5
2

)

j ,ψ
( 5
2

)

j

〉
∆x

ψ
( 5
2

)

j,`

]
, (6.4)

ψ
(4)
j,` = e

−i∆t
(
Vj(x`)+

∑N
k=1 βjk|ψ

(3)
k,` |

2
)
/2
ψ

(3)
j,` , 0 ≤ ` ≤M, 1 ≤ j ≤ N,

ψn+1
j,` =

M/2−1∑
p=−M/2

e−i∆t µ
2
p/4 (̂ψ

(4)
j )

p
eiµp(x`−a).

Here, µp = pπ
b−a , (̂ψnj )

p
and (̂ψ

(4)
j )

p
(p = −M

2 , · · · ,
M
2 ) are the discrete Fourier transform

coefficients of the vectors ψnj and ψ
(4)
j (j = 1, · · · , N) , respectively. Moreover,

ψ
( 5
2

)

j,` =:
1

2

(
ψ

(3)
j,` + ψ

(2)
j,`

)
,

〈
ψ

( 5
2

)

j ,ψ
( 5
2

)

k

〉
∆x

=: ∆x
M−1∑
`=0

ψ
( 5
2

)

j,` ψ̄
( 5
2

)

k,` .

Although the Crank-Nicolson step (6.4) is fully implicit, it can be either solved efficiently by
Krylov subspace iteration method with proper preconditioner [4] or the fixed-point iteration
method with a stabilization parameter [13]. In addition, TSCN-FP is of spectral accuracy
in space and second-order accuracy in time. By following the standard procedure, it is
straightforward to show that the TSCN-FP conserve mass of each component in discrete
level, i.e., ‖ψnj ‖2l2 :=

〈
ψnj ,ψ

n
j

〉
∆x
≡ ‖ψ0

j ‖2l2 for n ≥ 0 and j = 1, 2, . . . , N . We omit the
details here for brevity.

6.2. Numerical Results. In this section, we apply the TSCN-FP schemes proposed in the
previous section to simulate some interesting dynamics. For our simulation, we choose

β = 1, ∆t = 2× 10−4, D = [−12, 12]d, d = 1, 2.
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The potentials and initial data are chosen respectively as follows:

Vj(x) = π2α2
j |x|2, ψ0

j =
√
aj/π e

−aj |x−xj0|2 .

Here, αj and xj0 are real constants that will be given later. In fact, complete and practical
synchronization estimates do not depend on the form of the initial data and the relative
L2-distances of the initial data play a crucial role. However, when we deal with the center-
of-mass xc, we used the Gaussian initial data so that they have the symmetric form (see
Remark 4.2).

Example 6.1. Here, we consider the two-component system in 1-d, i.e., we take N = 2
and d = 1 in (1.2). To this end, we take (x0

1, x
0
2) = (2.5,−5) and consider the following two

cases: for j = 1, 2

Case 1. fix αj = βj` = 1 (` = 1, 2) and vary κ = 0, 2, 20.
Case 2. fix αj = j, β12 = β21 = 1, β11 = 4β22 = 2 and vary κ = 0, 2, 10, 20.

Figure 6.1 and Figure 6.2 depict the time evolution of the quantity 1 − R(t) (where R(t)

is the real part of the correlation function h12(t)), the center of mass xjc(t), the component
mass ‖ψj‖2 and the total energy E(t) for Case 1 and Case 2, respectively. From these
figures and other numerical experiments not shown here for brevity, we can see the following
observations.

(i) For all cases, we observe that the mass is conserved along time.
(ii). If the Lohe coupling is off, i.e., κ = 0, both the mass and energy are conserved well,
and the center of mass (x1

c(t), x
2
c(t)) are periodic in time with the same period. In addition,

for the identical case, i.e., B = J2 and V1(x) = V2(x), R(t) is conserved for identical case.
(iii). If the Lohe coupling is on, i.e., κ > 0, the phenomena become complicated. The
energy is no longer conserved, indeed it decays to some value for large κ while oscillates for
small κ.
(iv). Moreover, for the identical case, R(t) converges exponentially to 1, which coincides
with the theoretical results. Thus, the complete synchronization occurs in this case. After
the complete synchronization, ‖ψ1(x, t)−ψ2(x, t)‖∞ will converge to zero and the center of
mass x1

c(t) and x2
c(t) will become the same and swing periodically along the line connecting

−x̄0
c and x̄0

c (here, x̄0
c := (x1

c(0) + x2
c(0))/2).

(v). Furthermore, for the non-identical case, i.e., B 6= J2 and V1(x) 6= V2(x), R(t) does not
converge to 1, i.e., the complete synchronization cannot occur. However, for large κ, R(t)
indeed converges to some definite constant R∞ < 1. The larger κ, the smaller value 1−R∞.
Meanwhile, |x1

c(t)− x2
c(t)| also converges to zero, which could be also justified in a similar

process as shown in Corollary 4.1.

Example 6.2. Here, we consider the six-component system in 2-d, i.e., we take N = 6
and d = 2 in (1.2). To this end, we here only consider the identical case, i.e., we choose
αj = 1 = βj` = 1 (j, ` = 1, · · · , 6 ). Let κ = 20, we consider four cases of initial setups:

Case 3. xj0 =
(
6 cos((j − 1)π/3), 6 sin((j − 1)π/3)

)
, j = 1, · · · , 6.

Case 4. xj0 =
(
2 + 4 cos(jπ/3− π/12), 2 + 4 sin(jπ/3− π/12)

)
, j = 1, · · · , 6.

Case 5. xj0 =
(
6 cos((j − 1)π/5), 6 sin((j − 1)π/5)

)
, j = 1, · · · , 6.
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Figure 6.1. Time evolution of the quantity 1 − R(t) (left), the center of

mass xjc(t) (middle), and the component mass ‖ψj‖2 and the total energy
E(t) (right) for Case 1 in Example 6.1 for κ = 0, 2, 20 (top to bottom).

Case 6. Random location:

x1
0 = (3.4707, 2.7526), x2

0 = (−0.8931, 1.9951), x3
0 = (0.1809,−1.1538),

x4
0 = (0.0937,−5.8995), x5

0 = (−2.9235,−2.4171), x6
0 = (−3.6423, 4.3714).

For Cases 3-6, Figure 6.3 illustrates the trajectory and time evolution of the center of

mass xjc(t) =: (xjc1(t), xjc2(t)), Figure 6.4 depicts the time evolution of |R1256(t)−R1256(0)|,
|R2456(t) − R2456(0)| & |R3456(t) − R3456(0)|, and Figure 6.5 shows the contour plots of
|ψ1(x, t)|2 at different times for. From these figures and other numerical experiments not
shown here for brevity, we can see the following observations.

(i). The complete synchronization occurs for all cases.

(ii). All the center of mass xjc(t) (j = 1, · · · , 6) will converge to the same periodic function
x̄c(t), which swings exactly along the line connecting the points (−x̄0

c1,−x̄0
c2) and (x̄0

c1, x̄
0
c2

which are defined as the average of the initial center of mass of the six oscillators:

(
x̄0
c1, x̄

0
c2

)
:=

1

6

6∑
j=1

xjc1(0),
1

6

6∑
j=1

xjc2(0)

 .
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Figure 6.2. Time evolution of the quantity 1 − R(t) (left), the center of

mass xjc(t) (middle), and the component mass ‖ψj‖2 and the total energy
E(t) (right) for Case 2 in Example 6.1 for κ = 0, 2, 10, 20 (top to bottom).

Thus, when x̄0
c1 = x̄0

c2 = 0, the center of mass will stay steady at the origin (cf. Figure 6.3
(a)), which also agrees with the conclusion in Remark 4.2.
(iii) Before synchronization, all density profiles |ψj(x, t)|2 (j = 1, · · · , 6) will evolve similarly,
i.e., the same dynamical pattern as those shown in Figure 6.5 for |ψ1|2 (only differ from
the ‘color’, i.e., the more blurred humps imply the centers of the other five component,
while the lighter one shows the one of the current component). While after synchronization

(around t = 0.4, which corresponds to the moment the center of mass xjc (j = 1, · · · , 6)
meet together in Figure 6.3), all ψj(x, t) (hence also for all density profiles) will converge to
the same function, whose density changes periodically in time (as shown in columns 4–6 in



SYNCHRONIZATION OF THE MULTI-COMPONENT GROSS-PITAEVSKII-LOHE SYSTEM 35

Figure 6.5, which also indicate the periodic dynamics for the center of mass that illustrated
in Figure 6.3). In addition, before synchronization, although the numerical schemes cannot
conserve the cross-ratio like quantities Rijkl(t)(1 ≤ i, j, k, l ≤ 6) in discretized level, the
difference of those quantities from their initial ones are still small (cf. Figure 6.4). It would
be interesting problem to derive a numerical schemes which preserve those quantities exactly
in discretized level, and we leave it here as a future work in [38].
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Figure 6.3. First two columns: trajectory of center of mass xjc(t) in t ∈
[0, tc] and t ∈ [tc, 10] (tc = 1.5 for first row while 0.5 for the others). The

third column: time evolution of xjc1(t) and xjc2(t)) (right). ◦ denotes location

of xjc(0), while ♦ denotes the one of xjc(tc).
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Figure 6.4. Time evolution of |R1256(t)−R1256(0)|, |R2456(t)−R2456(0)|
and |R3456(t)−R3456(0)| for Case 3-6 (Left to right).

(a)

(b)

(c)

(d)

Figure 6.5. Contour plots of |ψ1(x, t)|2 at different time t for Cases 3-5 in
Example 6.2 (the top 4 rows) and color bars of the contour plots at t = 0.5
(bottom left) and other time t (bottom right).

7. Conclusion

In this paper, we have proposed a coupled nonlinear Schrödinger equations, namely the
Gross-Pitaevskii-Lohe (GPL) system. This model incorporates the nonlinear cubic inter-
actions between quantum particles for BEC and nonlinear Lohe interactions for quantum
synchronization. We provided several sufficient frameworks for complete and practical syn-
chronizations of the GPL system. For the analytical treatment, we considered three types
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of interaction matrices for cubic interactions: fully identical, weakly identical and hetero-
geneous cases. For the fully identical case where interaction rates are the same constant,
we presented a sufficient framework leading to the complete synchronization in terms of the
system parameters and initial data. We here assumed that the network matrix is close to the
identity matrix in L∞-topology. For the weakly and fully nonidentical cases, we have shown
that practical synchronization can emerge in any finite time interval when the perturbation
of the interaction matrix around the common positive constant is sufficiently small or the
coupling strength between oscillators is sufficiently large. Since we do not know whether
L4-norm of a wavefunction is uniformly-in-time bounded or not, we provide the estimate
which is valid on any finite time interval. On the other hand, for the two-oscillator system,
we provided explicit dynamic laws for the governing law of the motion of the center-of-mass.
In this case, we have observed that both periodic behavior and synchronous behavior can
emerge under some well-prepared initial data. On the numerical front, we fully discretize
the GPL system by utilising Fourier pseudo-spectral in space and time-splitting scheme
coupled with Crank-Nicolson scheme in time. Applying these methods, we presented sev-
eral numerical examples supporting our analytic results. There are many interesting issues
which are not addressed in this paper, e.g., existence of stationary states and their stability.
We leave these issues as future works.

Appendix A. Proof of Theorem 3.1

In this appendix, we present global well-posedness of system (1.2):i∂tψj = −1

2
∆ψj + Vjψj +

N∑
k=1

βjk|ψk|2ψj +
iκ

2N

N∑
k=1

ajk

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
,

ψj(x, 0) = ψ0
j (x), (x, t) ∈ Rd × R+, j = 1, · · · , N.

(A.1)

A.1. Strichartz estimates. We first recall the classical Strichartz estimates (see for in-

stance Theorem 2.3.3 in [19] ). Let U(t) = e
i
2
t∆ be a Schrödinger group generated by the

Laplacian, and we say that a pair (q, r) is admissible if
2 ≤ r ≤ ∞, d = 1,

2 ≤ r <∞, d = 2,

2 ≤ r ≤ 2d
d−2 , d ≥ 3,

and
2

q
= d

(
1

2
− 1

r

)
.

Proposition A.1 (Strichartz estimates). The following assertions hold:
(i) For every ϕ ∈ L2(Rd), the function t 7→ U(t)ϕ belongs to

Lq(R, Lr(Rd)) ∩ C(R, L2(Rd))

for every admissible pair (q, r). Furthermore, there exists a constant C such that

‖U(·)ϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2(Rd) for every ϕ ∈ L2(Rd).

(ii) Let I be an interval of R and t0 ∈ Ī. If (γ, ρ) is an admissible pair and f ∈ Lγ′(I, Lρ′(Rd)),
then for every admissible pair (q, r), the function

t 7→ Φf (t) =

∫ t

t0

U(t− s)f(s)ds, t ∈ I
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belongs to Lq(I, Lr(Rd))∩C(Ī , L2(Rd)). Furthermore, there exists a constant C independent
of I such that

‖Φf‖Lq(I,Lr) ≤ C‖f‖Lγ′ (I,Lρ′ ) for every f ∈ Lγ′(I, Lρ′(Rd)).

Below, we introduce the energy space for an external harmonic potential:

XH :=
{
u ∈ H1(Rd) : x 7→ |x|u(x) ∈ L2(Rd)

}
,

where the norm ‖ · ‖XH associated to XH is defined as follows:

‖u‖XH := ‖u‖L2(Rd) + ‖∇u‖L2(Rd) + ‖xu‖L2(Rd).

We first show the local existence for (A.1).

Lemma A.1 (Local existence). Suppose that the initial data belongs to XH :

ψ0
j ∈ XH for all j = 1, · · · , N .

Then, there exists T∗ and a unique solution to (A.1) such that

ψj ,∇ψj , xψj ∈ C([0, T ];L2(Rd)) ∩ L
8
d ([0, T ];L4(Rd)).

Proof. We use Duhamel’s formula for (A.1) to find

ψj(t) = U(t)ψ0
j +

∫ t

0
U(t− s)(Vjψj(s)) ds+

∫ t

0
U(t− s)

(
N∑
k=1

βjk|ψk|2ψj

)
ds

+
iκ

2N

N∑
k=1

ajk

∫ t

0
U(t− s)

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)
ds︸ ︷︷ ︸

=: I7

, t ∈ [0, T ].
(A.2)

The first three terms in the right-hand side of (A.2) can be estimated using standard
Strichartz theory. For the term I7, it follows from Proposition A.1(i) that for admissible
pair (q, r),∥∥∥∥U(t− s)

(
ψk −

〈ψj , ψk〉
〈ψj , ψj〉

ψj

)∥∥∥∥
Lq(R,Lr)

≤ C
∥∥∥∥ψk − 〈ψj , ψk〉〈ψj , ψj〉

ψj

∥∥∥∥
L2(Rd)

≤ 2C,

where we used |〈ψj , ψk〉| ≤ 1. Hence,

I7 ≤ 2CT.

We denote the right-hand side of (A.2) as S[ψj ](t). Then, we choose T sufficiently small so
that the map S becomes a strict contraction and finally use the standard fixed point theory
to show the local existence for (A.1). �

We are now ready to present a proof of Theorem 3.1

(Proof of Theorem 3.1) To extend the local solution to the global solution, we refine the
energy estimate in Lemma 2.1. For the energy estimate, we assume that the solution



SYNCHRONIZATION OF THE MULTI-COMPONENT GROSS-PITAEVSKII-LOHE SYSTEM 39

{ψj}Nj=1 are sufficiently regular so that the following estimates can be performed. We recall

the simplified notation in (2.6):

Cj [Ψ] =
1

2

N∑
`=1

βj`|ψ`|2.

We observe

N∑
j=1

E1
j [Ψ] =

N∑
j=1

(Vj + Cj [Ψ])|ψj |2 =
2

4

 N∑
j=1

(Vj + Cj [Ψ])|ψj |2 +

N∑
k=1

(Vk + Ck[Ψ])|ψk|2
 ,

N∑
j=1

E2
j [Ψ] =

1

4

N∑
j,k=1

(Vj + Vk + Cj [Ψ] + Ck[Ψ])(|ψj |2 + |ψk|2).

(A.3)

Then, (A.3)2 − (A.3)1 yields

N∑
j=1

E2
j [Ψ]−

N∑
j=1

E1
j [Ψ] =

1

4

N∑
j,k=1

(Vj − Vk + Cj [Ψ]− Ck[Ψ])(|ψj |2 − |ψk|2)

≤ 1

4

N∑
j,k=1

(Vj + Cj [Ψ])|ψj |2 +
1

4

N∑
j,k=1

(Vk + Ck[Ψ])|ψk|2 =
N

2

N∑
j=1

E1
j [Ψ].

(A.4)

We substitute the estimate (A.4) into (2.13) in Lemma 2.1 to obtain

d

dt
E [Ψ] = κ

N∑
j=1

E2
j [Ψ]− κ

N∑
j=1

rjE1
j [Ψ]− κEd[Ψ] ≤ κ

(
1 +

N

2

) N∑
j=1

E1
j [Ψ] = κ

(
1 +

N

2

)
E [Ψ].

(A.5)
By integrting (A.5), we find

E [Ψ](t) ≤ E [Ψ](0)eκ(1+N
2 )t, t ∈ [0, T ]. (A.6)

Hence, the energy does not blow up in any finite time interval. This completes the proof.

Remark A.1. In Sections 5.2 and 5.3, we impose a priori condition:

sup
0≤t≤T

max
j
‖ψj(t)‖4 ≤M(T ) <∞.

From the refined energy estimate (A.6), one has∫
Rd
|ψj(x, t)|4dx ≤

1

βjj
E [Ψ] ≤ E [Ψ](0)

βjj
eκ(1+N

2 )t, j = 1, · · · , N, t ∈ [0, T ].

Appendix B. Proof of Lemma 4.3

Consider the first-order system with variable coefficients:{
Ż(t) = A(t)Z(t) +G(t), t > 0,

Z(0) = (x0, y0).
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where

Z(t) :=

x(t)

y(t)

 , A(t) :=

f(t) p

−q f(t)

 , G(t) :=

g1(t)

g2(t)

 .

Then, our purpose is to derive a representation formula for the solution Z(t) = (x(t), y(t)):x(t)

y(t)

 =

e∫ t0 f(s)ds 0

0 e
∫ t
0 f(s)ds

 cos(
√
pqt)

√
p
q sin(

√
pqt)

−
√

q
p sin(

√
pqt) cos(

√
pqt)

x0

y0


+ e

∫ t
0 A(s)ds

∫ t

0
e−
∫ s
0 A(τ)dτG(s)ds, t ≥ 0.

(B.1)

The derivation of (B.1) will be performed in two steps.

• Step A (Derivation of integral representation of Z): We set

F (t) :=

∫ t

0
f(s)ds, t > 0.

and claim:

A(t)

(∫ t

0
A(s)ds

)
=

(∫ t

0
A(s)ds

)
A(t), t ≥ 0. (B.2)

For the proof of claim (B.2), note that

A(t)

∫ t

0
A(s)ds

=

f(t) p

−q f(t)

F (t) pt

−qt F (t)

 =

 f(t)F (t)− pqt ptf(t) + pF (t)

−qF (t)− qtf(t) −pqt+ f(t)F (t)


=

F (t) pt

−qt F (t)

f(t) p

−q f(t)

 =

(∫ t

0
A(s)ds

)
A(t).

This verifies our claim (B.2). Hence, we can use a variation of parameters to get

Z(t) = Z(0)e−
∫ t
0 A(s)ds + e−

∫ t
0 A(s)ds

∫ t

0
e
∫ s
0 A(τ)dτG(s)ds, t ≥ 0.

• Step B (Explicit calculation of e
∫ t
0 A(s)ds): First note that

∫ t

0
A(s)ds =

F (t) pt

−qt F (t)

 =

F (t) 0

0 F (t)

+

 0 pt

−qt 0

 =: B1(t) +B2(t).
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By straightforward calculation, it is easy to see the commutativity of B1 and B2:

B1(t)B2(t) =

F (t) 0

0 F (t)

 0 pt

−qt 0

 =

 0 F (t)pt

−F (t)qt 0

 ,

B2(t)B1(t) =

 0 pt

−qt 0

F (t) 0

0 F (t)

 =

 0 F (t)pt

−F (t)qt 0

 .

Thus, we can see that B1(t) and B2(t) commute:

B1(t)B2(t) = B2(t)B1(t), t ≥ 0.

Hence, we can write

e
∫ t
0 A(s)ds = eB1(t)eB2(t). (B.3)

To calculate e
∫ t
0 A(s)ds, we present the estimate of eB1(t) and eB2(t), respectively.

� (Estimate of eB1(t)): Since B1(t) is a diagonal matrix, its matrix exponential is given by

eB1(t) =

eF (t) 0

0 eF (t)

 , t ≥ 0. (B.4)

� (Estimate of eB2(t)): It follows from definition of matrix exponential and the identity(
B(t)

)2
=
(
− pqt2

)
Id, t ≥ 0

that one has

eB2(t) = I2 +B2(t) +
1

2!
B2(t)2 +

1

3!
B2(t)3 +

1

4!
B2(t)4 + · · ·

=

(
1− pqt2

2!
+

(pqt2)2

4!
+ · · ·

)
I2 +

(
1− pqt2

3!
+

(pqt2)2

5!
+ · · ·

)
B2(t)

= cos(
√
pqt)I2 +

sin(
√
pqt)

√
pqt

B2(t)

=

cos(
√
pqt) 0

0 cos(
√
pqt)

+

 0
√

p
q sin(

√
pqt)

−
√

q
p sin(

√
pqt) 0


=

 cos(
√
pqt)

√
p
q sin(

√
pqt)

−
√

q
p sin(

√
pqt) cos(

√
pqt)

 , t ≥ 0.

(B.5)

In (B.3), we combine (B.4) and (B.5) to find

e
∫ t
0 A(s)ds =

eF (t) 0

0 eF (t)

 cos(
√
pqt)

√
p
q sin(

√
pqt)

−
√

q
p sin(

√
pqt) cos(

√
pqt)

 , t ≥ 0.

This completes the proof.
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