
Numerische Mathematik
https://doi.org/10.1007/s00211-019-01058-2

Numerische
Mathematik

Regularized numerical methods for the logarithmic
Schrödinger equation

Weizhu Bao1 · Rémi Carles2 · Chunmei Su3 ·Qinglin Tang4

Received: 2 December 2018 / Revised: 10 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We present and analyze two numerical methods for the logarithmic Schrödinger
equation (LogSE) consisting of a regularized splittingmethod and a regularized conser-
vative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical
blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the
LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small reg-
ularized parameter 0 < ε � 1 is adopted to approximate the LogSE with linear
convergence rate O(ε). Then we use the Lie–Trotter splitting integrator to solve the
RLogSE and establish its error bound O(τ 1/2 ln(ε−1))with τ > 0 the time step, which
implies an error bound at O(ε + τ 1/2 ln(ε−1)) for the LogSE by the Lie–Trotter split-
ting method. In addition, the CNFD is also applied to discretize the RLogSE, which
conserves the mass and energy in the discretized level. Numerical results are reported
to confirm our error bounds and to demonstrate rich and complicated dynamics of the
LogSE.

Mathematics Subject Classification 35Q40 · 35Q55 · 65M15 · 81Q05

1 Introduction

We consider the logarithmic Schrödinger equation (LogSE) which was originally
introduced as a model of nonlinear wave mechanics (cf. [14])

{
i∂t u(x, t) + Δu(x, t) = λu(x, t) ln(|u(x, t)|2), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(1.1)
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where t is time, x = (x1, . . . , xd)T ∈ R
d (d = 1, 2, 3) is the spatial coordinate,

u := u(x, t) ∈ C is the dimensionless wave function, λ ∈ R\{0} is a dimension-
less real constant of the nonlinear interaction strength, and Ω = R

d or Ω ⊂ R
d

is a bounded domain with homogeneous Dirichlet boundary condition or periodic
boundary condition posted on the boundary. The LogSE arises from different applica-
tions, such as quantummechanics [49], quantumoptics [14–16,32,39], nuclear physics
[34,36], Bohmian mechanics [42], effective quantum gravity [51], theory of superflu-
idity and Bose-Einstein condensation [5].

We emphasize that the nonlinearity z �→ z ln |z|2 is not locally Lipschitz continuous
due to the singularity of the logarithm at the origin, and therefore even the well-
posedness of the Cauchy problem for (1.1) is not completely obvious. We refer to
[18,22,30] for a study of the Cauchy problem by compactness methods in a suitable
functional framework (which depends on the sign of λ based on a priori estimate),
and to [33] for an alternative proof relying on the strong convergence of suitable
approximate solutions when λ < 0.

Similar to the more usual cubic nonlinear Schrödinger equation, the LogSE con-
serves the mass, momentum and energy [21], which are defined, respectively, as
follows:

M(u(·, t)) := ‖u(·, t)‖2L2(Ω)
≡ ‖u0‖2L2(Ω)

= M(u0), (1.2)

P(u(·, t)) := Im
∫

Ω

u(x, t)∇u(x, t)dx ≡ Im
∫

Ω

u0(x)∇u0(x)dx = P(u0), t ≥ 0,

(1.3)

E(u(·, t)) := ‖∇u(t)‖2L2(Ω)
+ λ

∫
Ω

|u(x, t)|2 ln(|u(x, t)|2)dx

≡ ‖∇u0‖2L2(Ω)
+ λ

∫
Ω

|u0(x)|2 ln(|u0(x)|2)dx = E(u0). (1.4)

At this stage, the only difference with the cubic nonlinear Schrödinger equation is the
expression of the energy. We emphasize that the second term in the energy, referred
to as interaction energy, has no definite sign, since

∫
|u|>1

|u(x, t)|2 ln(|u(x, t)|2)dx ≥ 0, while
∫

|u|<1
|u(x, t)|2 ln(|u(x, t)|2)dx ≤ 0.

Therefore, it is not obvious to guess which sign of λ leads to which type of dynamics.
In the case λ < 0, no solution is dispersive, as proven in [20]. This is reminiscent of the
focusing nonlinear Schrödinger equation, where, however, small solutions are always
dispersive. In addition, unlike what happens in the case of the nonlinear Schrödinger
equation, every solution is global in time: there is no such thing as finite time blow
up for LogSE. In the case λ < 0, stationary solutions are available, called Gaussons
(as noticed in [15]; see below), which turn out to be orbitally stable, but not stable in
the usual sense of Lyapunov [20,23] (see also [4] for another proof, and [45,47] for
other particular solutions). In the case λ > 0, every solution is (global and) dispersive
with a non-standard rate (a logarithmic perturbation of the Schrödinger rate), and after
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a time-dependent rescaling related to this dispersion, the large time behavior of the
renormalized solution exhibits a universal Gaussian profile—a phenomenon which is
rather unique in the context of Hamiltonian dispersive PDEs, see [18].

Note that unlike the more standard nonlinear Schrödinger equation, a large set of
explicit solutions is associated to (1.1) in the case Ω = R

d . This important feature
was noticed already from the introduction of this model [14]: if u0 is Gaussian, u(·, t)
is Gaussian for all time, and solving (1.1) amounts to solving ordinary differential
equations. For the convenience of the reader, we briefly recall the formulae given in
[8]. In the one-dimensional case, if

u0(x) = b0e
− a0

2 x2+ivx , x ∈ R, (1.5)

with a0, b0 ∈ C satisfying α0 := Re(a0) > 0 and v ∈ R being constants, then the
solution of (1.1) is given by [4,8,18]

u(x, t) = b0√
r(t)

ei(vx−v2t)+Y (x−2vt,t), x ∈ R, t ≥ 0, (1.6)

where

Y (x, t) = −iφ(t) − α0
x2

2r(t)2
+ i

ṙ(t)

r(t)

x2

4
, x ∈ R, t ≥ 0, (1.7)

with φ := φ(t) and r := r(t) > 0 being the solutions of the ODEs

φ̇ = α0

r2
+ λ ln |b0|2 − λ ln r , φ(0) = 0, (1.8)

r̈ = 4α2
0

r3
+ 4λα0

r
, r(0) = 1, ṙ(0) = −2 Im a0. (1.9)

In the multi-dimensional case, one can actually tensorize such one-dimensional solu-
tions due to the property ln |ab| = ln |a| + ln |b|. In the case λ < 0, if a0 = −λ > 0,
then r(t) ≡ 1, which generates a moving Gausson when v = 0 and a static Gausson
when v = 0 of the LogSE; and if 0 < a0 = −λ, the function r is (time) periodic
(in agreement with the absence of dispersive effects), which generates a breather of
the LogSE [8]. In the case λ > 0, the large time behavior of r does not depend on its
initial data, r(t) ∼ 2t

√
λα0 ln t as t → ∞ (see [18]). The general dynamics is rather

well understood in the case λ > 0 (see [18]), but, aside from the explicit Gaussian
solutions, the dynamical properties in the case λ < 0 constitute a vast open problem: is
the dynamics comparable to the one, say, of the cubic nonlinear Schrödinger equation,
or is it drastically different? The numerical simulations presented in this paper tend
to suggest that the dynamics associated to (1.1) is quite rich, and reveals phenomena
absent (or at least unknown) in the case of the cubic nonlinear Schrödinger equation.

There is a long list of references on numerical approaches for solving the nonlinear
Schrödinger equation (NLSE) with power-like nonlinearity

i∂t u(x, t) + Δu(x, t) = λ|u(x, t)|2σu(x, t), x ∈ R
d , t > 0 (1.10)
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with σ ∈ N, or with nonlocal Hartree-type nonlinearity

i∂t u(x, t) + Δu(x, t) = λ
(
|x|−γ ∗ |u(x, t)|2

)
u(x, t), x ∈ R

d , t > 0 (1.11)

with γ > 0, such as finite difference method [1,3,24], finite element method [2,38],
relaxation method [12], and time-splitting pseudospectral method [3,9,10,41,44,46,
48], etc. For the error analysis of the time-splitting or split-step method for the NLSE,
we refer to [13,25,40] and the references therein; for the error estimates of the finite
difference method, we refer to [7,31,50]; and for the error bound of the finite element
method, we refer to [2,35,38]. However, few numerical methods have been proposed
and/or analyzed for the LogSE due to the singularity at the origin of the logarithmic
nonlinearity.

In order to avoid (numerical) blow-up and/or to suppress round-off error due to the
logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation
(RLogSE) with a small regularized parameter 0 < ε � 1 was introduced in [8] as⎧⎨
⎩
i∂t u

ε(x, t) + Δuε(x, t) = λuε(x, t) ln(ε + |uε(x, t)|)2, x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω.

(1.12)

For any fixed 0 < ε � 1, the nonlinearity is now locally Lipschitz continuous
(the singularity at the origin disappears). Remarkably enough, (1.12) enjoys similar
conservations as the original model (1.1), i.e., the mass (1.2) and momentum (1.3) as
well as the regularized energy defined as

Eε
(
uε(·, t)) =

∫
Ω

[|∇uε(x, t)|2 + 2λε|uε(x, t)| + λ|uε(x, t)|2 ln(ε + |uε(x, t)|)2

− λε2 ln
(
1 + |uε(x, t)|/ε)2 ]dx ≡ Eε(u0), t ≥ 0. (1.13)

The regularized model (1.12) was proven to approximate the LogSE (1.1) linearly in
ε for bounded Ω , i.e.,

sup
t∈[0,T ]

‖uε(t) − u(t)‖L2(Ω) = O(ε), ∀ T > 0,

and with an error O(ε
4

4+d ) in the case of the whole space Ω = R
d , provided that the

first two momenta of u0 belong to L2(Rd) [8]. In addition, Eε(uε) = E(u) + O(ε).
Therefore, it is sensible to analyze various numerical methods associated to (1.12),
provided that we have as precise as possible a control of the dependence of the various
constants upon ε. Then by using the triangle inequality, we can obtain error estimates
of different numerical methods for the LogSE (1.1).

Very recently, a semi-implicit finite difference method was proposed and analyzed
for (1.12) and thus for (1.1) [8]. As we know, there are many efficient and accurate
numerical methods for the nonlinear Schrödinger equation (1.10) such as the time-
splitting spectral method [9,10,13,17,19,27,28,37,40] and the conservative Crank–
Nicolson finite difference (CNFD) method [7,11]. The main aim of this paper is to
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present and analyze the time-splitting spectral method and the CNFD method for
(1.12) and thus for (1.1). We can establish rigorous error estimates for the Lie–Trotter
splitting under a much weaker constraint on the time step τ , τ � 1/| ln(ε)|2, instead of
τ � √

εe−CT | ln(ε)|2 for someC independent of ε, which is needed for the semi-implicit
finite difference method [8].

The rest of the paper is organized as follows. In Sect. 2, we propose a regular-
ized Lie–Trotter splitting method and establish rigorous error estimates. In Sect. 3,
a conservative finite difference method is adapted to the RLogSE. Numerical tests
are reported for both methods in term of accuracy under different regularities of the
initial data. In addition, the splitting method is applied to study the long time dynam-
ics in Sect. 4.2 and some very interesting and complicated dynamical phenomena are
presented to demonstrate the rich dynamics of the Logarithmic Schrödinger equa-
tion including interactions of Gaussons. Throughout the paper, we adopt the standard
Sobolev spaces as well as the corresponding norms and denoteC to represent a generic
constant independent of ε, τ and the function u, and C(c) means that C depends on c.

2 A regularized Lie–Trotter splittingmethod

In this section, we study the approximation property of a semi-discretization in time
for solving the regularized model (1.12) for d = 1, 2, 3. The numerical integrator we
consider is a Lie–Trotter splitting method [26,28,43]. For simplicity of notation, we
set λ = 1.

2.1 Lie–Trotter splittingmethod

The operator splitting methods for the time integration of (1.12) are based on the
splitting

∂t u
ε = A(uε) + B(uε),

where

A(uε) = iΔuε, B(uε) = −iϕε(uε), ϕε(z) = z ln(ε + |z|)2,
and the solution of the subproblems{

i∂tv(x, t) = −Δv(x, t), x ∈ Ω, t > 0,

v(x, 0) = v0(x),
(2.1)

{
i∂tω(x, t) = ϕε(ω(x, t)), x ∈ Ω, t > 0,

ω(x, 0) = ω0(x),
(2.2)

where Ω = R
d or Ω ⊂ R

d is a bounded domain with homogeneous Dirichlet or
periodic boundary condition on the boundary. The associated evolution operators are
given by
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v(·, t) = Φ t
A(v0) = eitΔv0, ω(·, t) = Φ t

B(ω0) = ω0e
−i t ln(ε+|ω0|)2 , t ≥ 0.

(2.3)

Regarding the exact flow Φ t
A and Φ t

B , we have the following properties.

Lemma 1 For (2.1), we have the isometry relation

‖Φ t
A(v0)‖Hs (Ω) = ‖v0‖Hs (Ω), s ∈ N, t ≥ 0. (2.4)

For (2.2), if ω0 ∈ H2(Ω), then

‖Φ t
B(ω0)‖L2(Ω) = ‖ω0‖L2(Ω), ‖∇Φ t

B(ω0)‖L2(Ω) ≤ (1 + 2t)‖∇ω0‖L2(Ω),

‖Φ t
B(ω0)‖H2(Ω) ≤ C(‖ω0‖H2(Ω))(1 + t + t2)/ε.

(2.5)

Proof By direct calculation, we get

∇Φ t
B(ω0) = e−i t ln(ε+|ω0|)2

[
∇ω0 − 2i tω0

ε + |ω0|∇|ω0|
]

, with

∇|ω0| = ω0∇ω0 + ω0∇ω0

2|ω0| ,

which gives immediately, since |∇|ω0|| ≤ |∇ω0|,
‖∇Φ t

B(ω0)‖L2(Ω) ≤ (1 + 2t)‖∇ω0‖L2(Ω).

Noticing that

∂2Φt
B(ω0)

∂xk∂x j
= e−i t ln(ε+|ω0|)2

[
∂2ω0

∂xk∂x j
− 2i t

ε+|ω0|

(
∂ω0

∂xk

∂|ω0|
∂x j

+ ∂ω0

∂x j

∂|ω0|
∂xk

+ω0
∂2|ω0|
∂xk∂x j

)

+ 2i t − 4t2

(ε + |ω0|)2
∂|ω0|
∂x j

∂|ω0|
∂xk

ω0

]
,

where∣∣∣∣ ∂2|ω0|
∂xk∂x j

∣∣∣∣ =
∣∣∣∣ 1

|ω0|Re
(

ω0
∂2ω0

∂xk∂x j
+ ∂ω0

∂x j

∂ω0

∂xk

)
− 1

|ω0|2
∂|ω0|
∂xk

Re

(
ω0

∂ω0

∂x j

)∣∣∣∣
≤
∣∣∣∣ ∂2ω0

∂xk∂x j

∣∣∣∣+ 2

|ω0|
∣∣∣∣∂ω0

∂x j

∣∣∣∣
∣∣∣∣∂ω0

∂xk

∣∣∣∣ ,
this yields that∣∣∣∣∣∂

2Φ t
B(ω0)

∂xk∂x j

∣∣∣∣∣ ≤ (1 + 2t)

∣∣∣∣ ∂2ω0

∂xk∂x j

∣∣∣∣+ 10t + 4t2

ε + |ω0|
∣∣∣∣∂ω0

∂x j

∣∣∣∣
∣∣∣∣∂ω0

∂xk

∣∣∣∣
≤ (1 + 2t)

∣∣∣∣ ∂2ω0

∂xk∂x j

∣∣∣∣+ 5t + 2t2

ε

(∣∣∣∣∂ω0

∂x j

∣∣∣∣
2

+
∣∣∣∣∂ω0

∂xk

∣∣∣∣
2
)

.
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Thus ∥∥∥∥∥∂2Φ t
B(ω0)

∂xk∂x j

∥∥∥∥∥
L2(Ω)

≤ (1 + 2t)

∥∥∥∥ ∂2ω0

∂xk∂x j

∥∥∥∥
L2(Ω)

+ 5t + 2t2

ε

(∥∥∥∥∂ω0

∂x j

∥∥∥∥
2

L4(Ω)

+
∥∥∥∥∂ω0

∂xk

∥∥∥∥
2

L4(Ω)

)
,

which completes the proof by recalling that H2(Ω) ↪→ W 1,4(Ω), since d ≤ 3. ��
We consider the Lie–Trotter splitting

uε,n+1 = Φτ (uε,n) = Φτ
A(Φτ

B(uε,n)), uε,0 = u0, (2.6)

for a time step τ > 0. Thus for uε,n ∈ H1(Ω), it follows from the isometry property
that the splitting method conserves the mass

‖uε,n+1‖L2(Ω) = ‖uε,n‖L2(Ω) ≡ ‖uε,0‖L2(Ω) = ‖u0‖L2(Ω), n ≥ 0,

and furthermore (2.5) gives uε,n ∈ H1(Ω) with

‖uε,n+1‖H1(Ω) ≤ (1 + 2τ)‖uε,n‖H1(Ω) ≤ e2nτ‖u0‖H1(Ω), n ≥ 0. (2.7)

2.2 Error estimates

In this section, we carry out the error analysis of the Lie–Trotter splitting (2.6).

Theorem 1 Let T > 0. Assume that the solution of (1.12) satisfies uε ∈
L∞(0, T ; H1(Ω)) for d = 1 or uε ∈ L∞(0, T ; H2(Ω)) for d = 2, 3. Then there
exists ε0 > 0 depending on ‖uε‖L∞(0,T ;H1(Ω)) for d = 1, and ‖uε‖L∞(0,T ;H2(Ω)) for
d = 2, 3, such that when ε ≤ ε0 and nτ ≤ T , we have

‖uε,n − uε(tn)‖L2(Ω) ≤ C
(
T , ‖uε‖L∞([0,T ];H1(Ω))

)
ln(ε−1)τ 1/2,

where C(·, ·) is independent of ε > 0.

Remark 1 As established in [8, Theorem 2.2], for an arbitrarily large fixed T > 0, the
above assumptions are satisfied as soon as u0 ∈ H1(Ω) if d = 1, and u0 ∈ H2(Ω) if
d = 2, 3. More precisely, for k = 1, 2,

sup
t∈[0,T ]

‖uε(t)‖Hk (Ω) ≤ C
(‖u0‖Hk (Ω)

)
,

for a constant C depending on ‖u0‖Hk (Ω), but not on 0 < ε ≤ 1.
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The above result provides a convergence of order 1/2,with a constantmildly singular in
ε (a logarithm).We will see in Remark 2 that it is possible to establish the convergence
of order 1, which is rather natural for a Lie–Trotter scheme, but the price to pay is a
much more singular dependence with respect to ε. And numerical observations show
that the convergence rate degenerates to 1/2 for solutions belonging to H1 in 1D (cf.
first figure in Fig. 3).

Before giving the proof, we introduce the following lemma, which is a variant of
[21, Lemma 9.3.5], established in [8].

Lemma 2 For any z1, z2 ∈ C, we have

∣∣Im ((ϕε(z1) − ϕε(z2))(z1 − z2)
)∣∣ ≤ 2|z1 − z2|2.

Lemma 3 (Local error) Assume u0 ∈ H1(Ω) for d = 1 or u0 ∈ H2(Ω) for d = 2, 3.
Let Ψ t denote the exact flow of (1.12), i.e., uε(t) = Ψ t (u0). Then for τ ≤ 1, there
exists ε0 > 0 depending on ‖u0‖H1(Ω) for d = 1 and ‖u0‖H2(Ω) for d = 2, 3 such
that when ε ≤ ε0, we have

‖Ψ τ (u0) − Φτ (u0)‖L2(Ω) ≤ C‖u0‖H1(Ω) ln(ε
−1)τ 3/2.

Proof It can be obtained from the definition that

i∂t (Ψ
t u0) + Δ(Ψ t u0) = ϕε(Ψ t u0),

i∂t (Φ
t u0) + Δ(Φ t u0) = Φ t

A(ϕε(Φ t
Bu0)).

Denoting E t u0 = Ψ t u0 − Φ t u0, we have

i∂t (E t u0) + Δ(E t u0) = ϕε(Ψ t u0) − Φ t
A(ϕε(Φ t

Bu0)). (2.8)

Denote by

( f , g) =
∫

Ω

f g dx

the L2 inner product. Multiplying (2.8) by E t u0, integrating in space and taking the
imaginary part, the term corresponding to the Laplacian vanishes (in the case with a
boundary, we use the Dirichlet boundary condition or periodic boundary condition),
and Lemma 2 yields

1

2

d

dt
‖E t u0‖2L2(Ω)

= Im
(
ϕε(Ψ t u0) − Φ t

A(ϕε(Φ t
Bu0)), E t u0

)
= Im

[(
ϕε(Ψ t u0) − ϕε(Φ t u0), E t u0

)+ (ϕε(Φ t u0) − Φ t
A(ϕε(Φ t

Bu0)), E t u0
)]

≤ 2‖E t u0‖2L2(Ω)
+ ‖ϕε(Φ t u0) − Φ t

A(ϕε(Φ t
Bu0))‖L2(Ω)‖E t u0‖L2(Ω),
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which implies

d

dt
‖E t u0‖L2(Ω) ≤ 2‖E t u0‖L2(Ω) + ‖ϕε(Φ t u0) − Φ t

A(ϕε(Φ t
Bu0))‖L2(Ω)

≤ 2‖E t u0‖L2(Ω) + ‖ϕε(Φ t u0) − ϕε(Φ t
Bu0)‖L2(Ω)

+ ‖ϕε(Φ t
Bu0) − Φ t

A(ϕε(Φ t
Bu0))‖L2(Ω). (2.9)

If Ω = R
d , for any f ∈ H1(Ω), we compute

∥∥ f − Φ t
A f
∥∥
L2(Ω)

=
∥∥∥(1 − e−i t |ξ |2) f̂ (ξ)

∥∥∥
L2(Ω)

= 2
∥∥∥sin (t |ξ |2/2

)
f̂ (ξ)

∥∥∥
L2(Ω)

≤ √
2t
∥∥ξ f̂ (ξ)

∥∥
L2(Ω)

≤ √
2t ‖ f ‖H1(Ω). (2.10)

WhenΩ is a bounded domain, (2.10) can be similarly obtained via the discrete Fourier
transform. At this stage, one could argue that the above estimate can be improved, by
removing the square root, the price to pay being an H2-norm instead of an H1-
norm. It turns out that this approach eventually yields an extra 1/ε factor in the error
estimate, which we want to avoid here; see Remark 2. Recalling that ϕε(Φ t

Bu0) =
u0 ln(ε + |u0|)2e−i t ln(ε+|u0|)2 , we compute

∇ϕε(Φ t
Bu0) = e−i t ln(ε+|u0|)2

[
∇u0 ln(ε+|u0|)2+ 2u0∇|u0|

ε+|u0|
(
1−i t ln(ε+|u0|)2

)]
,

which yields

|∇ϕε(Φ t
Bu0)| ≤ 2|∇u0|

(
1 + (1 + 2t)max

{| ln(ε)|, ∣∣ln (ε + ‖u0‖L∞(Ω)

)∣∣}) ,
where we have used the estimate

| ln(ε + |u0|)| ≤ max
(| ln ε|, ∣∣ln (ε + ‖u0‖L∞(Ω)

)∣∣) ,
which takes the possible zeroes of u0 into account. This implies

‖ϕε(Φ t
Bu0)‖H1(Ω) ≤ C ln(ε−1)(1 + t)‖u0‖H1(Ω),

when ε ≤ ε1 := min{1/2, 1/‖u0‖L∞(Ω)}. Note that ‖u0‖L∞(Ω) is finite by using
Sobolev imbedding (H1(Ω) ↪→ L∞(Ω) for d = 1, and H2(Ω) ↪→ L∞(Ω) for
d = 2, 3) and the assumption that u0 ∈ H1(Ω) for d = 1 and u0 ∈ H2(Ω) for
d = 2, 3. Hence we have

‖ϕε(Φ t
Bu0) − Φ t

A(ϕε(Φ t
Bu0))‖L2(Ω) ≤ √

2t‖ϕε(Φ t
Bu0)‖H1(Ω)

≤ C ln(ε−1)
√
t(1 + t)‖u0‖H1(Ω),

(2.11)

for ε ≤ ε1, with ε1 depending on ‖u0‖H1(Ω) for d = 1 and ‖u0‖H2(Ω) for d = 2, 3.
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To estimate ‖ϕε(Φ t u0) − ϕε(Φ t
Bu0)‖L2(Ω) in (2.9), firstly we prove that

‖Φ t u0‖L∞(Ω), ‖Φ t
Bu0‖L∞(Ω) � ε−1. It follows from (2.4) and (2.5) that

‖Φ t u0‖H2(Ω) = ‖Φ t
Bu0‖H2(Ω) ≤ C(‖u0‖H2(Ω))(1 + t + t2)/ε.

Hence by Sobolev imbedding, when t ≤ 1, we have ‖Φ t u0‖L∞(Ω), ‖Φ t
Bu0‖L∞(Ω) ≤

C(‖u0‖H2(Ω)
)

ε
for d = 2, 3 and ‖Φ t u0‖L∞(Ω), ‖Φ t

Bu0‖L∞(Ω) ≤ C‖u0‖H1(Ω) for d =
1. Next we claim that for v(x), w(x) satisfying |v(x)|, |w(x)| ≤ C1/ε, it can be
established that

|ϕε(v(x)) − ϕε(w(x))| ≤ C ln(ε−1)|v(x) − w(x)|,

when ε is sufficiently small. Assuming, for example, 0 ≤ |w(x)| ≤ |v(x)|, then

|ϕε(v(x)) − ϕε(w(x))|
= 2

∣∣∣∣(v(x) − w(x)) ln(ε + |v(x)|) + w(x) ln
(
1 + |v(x)| − |w(x)|

ε + |w(x)|
)∣∣∣∣

≤ 2|v(x) − w(x)|| ln(ε + |v(x)|)| + 2|w(x)|
ε + |w(x)| |v(x) − w(x)|

≤ C ln(ε−1)|v(x) − w(x)|, (2.12)

when ε ≤ min(C1, 1). Thus, we obtain

‖ϕε(Φ t u0) − ϕε(Φ t
Bu0)‖L2(Ω) ≤ C ln(ε−1)‖Φ t u0 − Φ t

Bu0‖L2(Ω)

≤ C ln(ε−1)
√
2t‖Φ t

Bu0‖H1(Ω)

≤ C ln(ε−1)
√
2t(1 + 2t)‖u0‖H1(Ω), (2.13)

when ε ≤ ε2 with ε2 depending on ‖u0‖H2(Ω) for d = 2, 3 and ‖u0‖H1(Ω) for d = 1.
Combining (2.9), (2.11) and (2.13), we get

d

dt
‖E t u0‖L2(Ω) ≤ 2‖E t u0‖L2(Ω) + C ln(ε−1)

√
t(1 + t)‖u0‖H1(Ω).

Applying the Gronwall’s inequality, when τ ≤ 1, we have

‖Eτu0‖L2(Ω) ≤ C ln(ε−1)
√

τ(1 + τ)(e2τ − 1)‖u0‖H1(Ω) ≤ C ln(ε−1)τ 3/2‖u0‖H1(Ω),

when ε ≤ ε0 = min{ε1, ε2} depending on ‖u0‖H1(Ω) for d = 1 and ‖u0‖H2(Ω) for
d = 2, 3. ��

Furthermore, we also need the following lemma concerning on the stability prop-
erty.
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Lemma 4 (Stability) Let f , g ∈ L2(Ω). Then for all τ > 0, we have

‖Φτ ( f ) − Φτ (g)‖L2(Ω) ≤ (1 + 2τ)‖ f − g‖L2(Ω).

Proof Noticing that Φτ
A is a linear isometry on Hs(Ω), we obtain that

‖Φτ ( f ) − Φτ (g)‖L2(Ω) = ‖Φτ
B( f ) − Φτ

B(g)‖L2(Ω).

We claim that for any x ∈ Ω , we have

|Φτ
B( f )(x) − Φτ

B(g)(x)| ≤ (1 + 2τ)| f (x) − g(x)|.

Assuming, for example, | f (x)| ≤ |g(x)|, then by inserting a term f (x)e−iτ ln(ε+|g(x)|)2 ,
we can get that

|Φτ
B( f )(x) − Φτ

B(g)(x)| =
∣∣∣ f (x)e−iτ ln(ε+| f (x)|)2 − g(x)e−iτ ln(ε+|g(x)|)2

∣∣∣
=
∣∣∣ f (x) − g(x) + f (x)

(
e2iτ ln( ε+|g(x)|

ε+| f (x)| ) − 1
)∣∣∣

≤ | f (x) − g(x)| + 2| f (x)|
∣∣∣ sin (τ ln

( ε + |g(x)|
ε + | f (x)|

))∣∣∣
≤ | f (x) − g(x)| + 2τ | f (x)| ln

(
1 + |g(x)| − | f (x)|

ε + | f (x)|
)

≤ (1 + 2τ)| f (x) − g(x)|.

When | f (x)| ≥ |g(x)|, the same inequality is obtained by exchanging f and g in the
above computation. Thus the proof is completed. ��

Proof (Proof of Theorem 1) It can be easily concluded from (2.7) that uε,n ∈ H1(Ω)

and ‖uε,n‖H1(Ω) ≤ e2T ‖u0‖H1(Ω). The triangle inequality, (2.7), Lemmas 3 and 4
yield

123



W. Bao et al.

‖uε,n − uε(tn)‖L2(Ω)

= ‖Φτ (uε,n−1) − Ψ τ (uε(tn−1))‖L2(Ω)

≤ ‖Φτ (uε,n−1) − Φτ (uε(tn−1))‖L2(Ω) + ‖Φτ (uε(tn−1)) − Ψ τ (uε(tn−1))‖L2(Ω)

≤ (1 + 2τ)‖uε,n−1 − uε(tn−1)‖L2(Ω) + ‖Eτ (uε(tn−1))‖L2(Ω)

≤ (1 + 2τ)‖uε,n−1 − uε(tn−1)‖L2(Ω) + C‖uε(tn−1)‖H1(Ω) ln(ε
−1)τ 3/2

≤ C‖uε‖L∞(0,T ;H1(Ω)) ln(ε
−1)τ 3/2(1 + 1 + 2τ)

+ (1 + 2τ)2‖uε,n−2 − uε(tn−2)‖L2(Ω)

≤ · · ·
≤ C‖uε‖L∞(0,T ;H1(Ω)) ln(ε

−1)τ 3/2
[
1 + (1 + 2τ) + · · · + (1 + 2τ)n−1

]
+ (1 + 2τ)n‖uε,0 − u0‖L2(Ω)

≤ C‖uε‖L∞(0,T ;H1(Ω)) ln(ε
−1)τ 1/2(1 + 2τ)n

≤ C‖uε‖L∞(0,T ;H1(Ω))e
2T ln(ε−1)τ 1/2,

where we have used uε,0 = u0, see (2.6). This completes the proof. ��
Remark 2 Noticing that for any f ∈ H2(Ω) and t ≥ 0, we have [13]

‖ f − Φ t
A f ‖L2(Ω) ≤ t‖ f ‖H2(Ω),

and by tedious calculation, one can get that

‖ϕε( f )‖H2(Ω) ≤ C ln(ε−1)‖ f ‖H2(Ω) + Cε−1‖∇ f ‖2L4(Ω)
,

it can be concluded from (2.9) that

d

dt
‖E t u0‖L2(Ω)

≤ 2‖E t u0‖L2(Ω) + ‖ϕε(Φ t u0) − ϕε(Φ t
Bu0)‖L2(Ω)

+ ‖ϕε(Φ t
Bu0) − Φ t

A(ϕε(Φ t
Bu0))‖L2(Ω)

≤ 2‖E t u0‖L2(Ω) + C ln(ε−1)‖Φ t u0 − Φ t
Bu0‖L2(Ω) + t‖ϕε(Φ t

Bu0)‖H2(Ω)

≤ 2‖E t u0‖L2(Ω) + Ct ln(ε−1)‖Φ t
Bu0‖H2(Ω) + Ctε−1‖∇Φ t

Bu0‖2L4(Ω)

≤ 2‖E t u0‖L2(Ω) + C(‖u0‖H2(Ω))ε
−1 ln(ε−1)t + Ctε−1‖∇u0‖2L4(Ω)

≤ 2‖E t u0‖L2(Ω) + C(‖u0‖H2(Ω))ε
−1 ln(ε−1)t,

when ε is sufficiently small. Hence by using similar arguments, we can get that

‖uε,n − uε(tn)‖L2(Ω) ≤ C(T , ‖uε‖L∞([0,T ];H2(Ω)))ε
−1 ln(ε−1)τ,
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when ε ≤ c, where c > 0 depends on ‖uε‖L∞(0,T ;H1(Ω)) for d = 1 and
‖uε‖L∞(0,T ;H2(Ω)) for d = 2, 3. This approach yields a better convergence rate for
fixed ε > 0, but with a terrible dependence upon ε, as ε is intended to go to zero to
recover the solution of (1.1). Following Theorem 1, we get a reasonable numerical
approximation of the solution u to (1.1) provided that τ � 1/| ln(ε)|2 and ε � 1
(for uε to approximate u), while the above estimate requires the stronger condition
τ � ε/| ln(ε)|, and still ε � 1.

Remark 3 For the other Lie–Trotter splitting

uε,n+1 = Φτ
B

(
Φτ

A(uε,n)
) = Φτ

A(uε,n) − i
∫ τ

0
ϕε
(
Φs

BΦτ
A(uε,n)

)
ds,

unfortunately, we cannot get the similar error estimate as in Theorem 1, since the proof
involves (ϕε)′ or even (ϕε)′′, which yields negative powers of ε in the local error. In
fact, by using the standard arguments via the Lie commutator as in [40], we can get
the error bound

‖uε,n − uε(tn)‖L2(Ω) ≤ C(T , ‖uε‖L∞([0,T ];H2(Ω)))ε
−1τ,

when ε ≤ c with c depending on ‖uε‖L∞(0,T ;H2(Ω)).

Remark 4 (Strang splitting) When considering a Strang splitting,

uε,n+1 = Φ
τ/2
B

(
Φτ

A

(
Φ

τ/2
B (uε,n)

))
, (2.14)

or

uε,n+1 = Φ
τ/2
A

(
Φτ

B

(
Φ

τ/2
A (uε,n)

))
, (2.15)

one would expect to face similar singular factors as above. It turns out that the analysis
is even more intricate than expected, and we could not get any reasonable estimate
in that case, that is, improving Theorem 1 in terms of order for fixed ε, without (too
much) singularity in ε. This can be understood as a remain of the singularity of the
logarithm at the origin, yielding too many negative powers of ε in the case of (1.12).
Strang splitting usually provides better error estimates by invoking higher regularity
which, in our case, implies extra negative powers of ε.

3 A regularized Crank–Nicolson finite differencemethod

In this section, we introduce a conservative Crank–Nicolson finite difference (CNFD)
method for solving the regularized model (1.12). For simplicity of notation, we only
present the numerical method for the RLogSE (1.12) in 1D, as extensions to higher
dimensions are straightforward. When d = 1, we truncate the RLogSE on a bounded
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computational interval Ω = (a, b) with periodic boundary condition (here |a| and b
are chosen large enough such that the truncation error is negligible):

{
i∂t u

ε(x, t) + ∂xxu
ε(x, t)=λuε(x, t) ln(ε + |uε(x, t)|)2, x ∈ Ω, t>0,

uε(x, 0) = u0(x), x ∈ Ω; uε(a, t)=uε(b, t), uε
x (a, t) = uε

x (b, t), t≥0,

(3.1)

Choose a mesh size h := Δx = (b − a)/M with M being a positive integer and a
time step τ := Δt > 0 and denote the grid points and time steps as

x j := a + jh, j = 0, 1, . . . , M; tk := kτ, k = 0, 1, 2, . . .

Letuε,k
j be the approximationofuε(x j , tk), anddenoteuε,k = (uε,k

0 , uε,k
1 , . . . , uε,k

M )T ∈
C

M+1 as the numerical solution vectors at t = tk . Define the standard finite difference
operators

δ+
t u

k
j = uk+1

j − ukj
τ

, δ+
x u

k
j = ukj+1 − ukj

h
, δ2xu

k
j = ukj+1 − 2ukj + ukj−1

h2
.

Denote

XM =
{
v = (v0, v1, . . . , vM )T | v0 = vM , v−1 = vM−1

}
⊆ C

M+1,

equipped with inner products and norms defined as (recall that u0 = uM by periodic
boundary condition)

(u, v) = h
M−1∑
j=0

u jv j , ‖u‖2l2 = (u, u), |u|2H1 = (δ+
x u, δ+

x u),

‖u‖H1 =
√

‖u‖2
l2

+ |u|2
H1 , ‖u‖l∞ = sup

0≤ j≤M
|u j |.

Then we have for u, v ∈ XM ,

(−δ2xu, v) = (δ+
x u, δ+

x v) = (u,−δ2xv). (3.2)

Following the general CNFD form for the nonlinear Schrödinger equation as in [7,29],
we can get the CNFD discretization as

⎧⎨
⎩
iδ+

t u
ε,k
j =−1

2
δ2x (u

ε,k
j +uε,k+1

j )+Gε(u
ε,k+1
j , uε,k

j ), j =0, . . . , M−1,

uε,0
j =u0(x j ), j =0, . . . , M; uε,k+1

0 =uε,k+1
M , uε,k+1

−1 =uε,k+1
M−1 ,

k≥0.

(3.3)
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Here, Gε(z1, z2) is defined for z1, z2 ∈ C as

Gε(z1, z2) :=
∫ 1

0
fε(θ |z1|2 + (1 − θ)|z2|2)dθ · z1 + z2

2

= Fε(|z1|2) − Fε(|z2|2)
|z1|2 − |z2|2 · z1 + z2

2
,

with

fε(ρ) = λ ln(ε + √
ρ)2,

Fε(ρ) =
∫ ρ

0
fε(s)ds = 2λ(ρ − ε2) ln(ε + √

ρ) − λρ + 2ελ
√

ρ.

Then following the analogous arguments of the CNFD method for NLSE [7,29], we
can get the conservation properties in the discretized level

Mh(u
ε,k) = ‖uε,k‖2l2 := h

M−1∑
j=0

|uε,k
j |2 ≡ Mh(u

ε,0),

Eε
h(u

ε,k) := h
M−1∑
j=0

[
|δ+
x u

k
j |2 + Fε(|uε,k

j |2)
]

≡ Eε
h(u

ε,0).

Remark 5 Due to the fact that f ′
ε(ρ) = λρ−1/2

ε+√
ρ

is unbounded when ρ → 0+, thus
the techniques used in the literature [1,6] for establishing error bounds of the CNFD
method for the NLSE with general nonlinearity could not be applied to the case of
the CNFD method for the RLogSE. New techniques and/or more intricate or detailed
calculations are necessary in order to derive the error estimates of the CNFD method
for the RLogSE (1.12).

4 Numerical results

In this section, we first test the order of accuracy of the regularized Lie–Trotter split-
ting (LTSP) scheme (2.6), the Strang-splitting (STSP) scheme (2.14) and the CNFD
scheme (3.3). Thenwe apply the Strang-splittingmethod to investigate some long time
dynamics of the LogSE. In practical computation, we impose the periodic boundary
condition on Ω = (a, b) for the RLogSE (1.12).

For the Lie–Trotter and Strang splitting methods, we employ the Fourier pseudo-
spectral discretization [9,10] for the spatial variable. Let M be a positive even integer
and denote h = (b−a)/M and the grid points x j = a+ jh (0 ≤ j ≤ M −1). Denote
by uM,k the discretized solution vector over the grid points x j (0 ≤ j ≤ M − 1) at
time t = tk = kτ . Let FM and F−1

M denote the discrete Fourier transform and its
inverse, respectively. With this notation, Φτ

A(uM,k) (2.3) can be obtained by
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Φτ
A(uM,k) = F−1

M (e−iτ(μM )2FM (uM,k)),

where

μM = 2π

b − a

[
0, 1, . . . ,

(
M

2
− 1

)
,−M

2
, . . . ,−1

]
,

and the multiplication of two vectors is taken as point-wise. Moreover, Φτ
B can be

directly written in physical space.

4.1 Accuracy test

Here, we fix λ = −1 and d = 1. We compare the LTSP (2.6), STSP (2.14) and CNFD
(3.3) schemes for the following two initial set-ups:

Case I. We consider the smooth Gaussian-type data (1.5) as

u0(x) = 4
√−λ/πeivx+

λ
2 x

2
, x ∈ R, (4.1)

where v is a real constant. Indeed, with this initial data and Ω = R, φ and r in
(1.8)–(1.9) can be obtained explicitly and the LogSE (1.1) admits a moving Gausson
solution (1.6) with velocity v [15,18].

Case II. We consider the datum in Hϑ(Ω) as

uM,0 = uM
ϑ

‖uM
ϑ ‖l2

, uM
ϑ := F−1

M

(
|μM |−ϑFM (UM )

)
,

(|μM |−ϑ
)
l =

{ |μM
l |−ϑ , if μM

l = 0,
0, if μM

l = 0,
(4.2)

where

UM := rand(M, 1) + i rand(M, 1) ∈ C
M ,

with rand(M, 1) returning M uniformly distributed random numbers between 0 and
1. For typical initial values, see Fig. 1.

The RLogSE (1.12) is then solved by CNFD, LTSP and STSP on the domain
Ω = [−16, 16] and Ω = [−π, π ] for Case I and Case II, respectively. To quantify
the numerical errors, we introduce the error functions

eε∞(tk) = ‖uε(·, tk) − uε,k‖l∞ =: sup
0≤ j≤M

{
|uε(x j , tk) − uε,k

j |
}

(4.3)

eε
2(tk) =: ‖uε(·, tk) − uε,k‖l2 , eε

H1(tk) =:
√

(eε
2(tk))

2 + ‖δ+
x (uε(·, tk) − uε,k)‖2

l2
,

(4.4)
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303-
0

0.27

0.54

303-
0

0.25

0.5

Fig. 1 Initial data (4.2) for ϑ = 3
2 (left) and ϑ = 2 (right)

Fig. 2 Errors eε
H1 (1) of LTSP and STSP (left) and CNFD (right) for Case I

where uε is the exact solution of the RLogSE (1.12), while uε,k is the numerical
solution obtained by the CNFD, LTSP or STSP.

Example 1 We consider the initial dataCase I (4.1) with v = 1. The ‘exact’ solution uε

in (4.3) is obtained numerically by the STSP with τ = τe =: 10−6 and h = he =: 1
28
.

For LTSP and STSP, we fix h = he and vary τ = τ
j
k =: 101− j

10+k for j = 1, 2, 3 and
k = 0, . . . , 90. For CNFD, we vary the mesh size and time step simultaneously under

ratio τ = 2
5h = τ j =: 2− j

5 for j = 0, . . . , 7. Figure 2 shows the errors eε
H1(1) vs

time step τ under different ε for CNFD, LTSP and STSP schemes. It clearly shows
that LTSP/STSP is first/second-order convergent in time while CNFD is second-order
convergent in both space and time. In addition, for other initial datum smooth enough
(not shown here for brevity), all methods show their classical orders of convergence.
The same conclusion applies to eε

2(1) and eε∞(1).

Example 2 We consider the initial dataCase II (4.2). The ‘exact’ solution uε in (4.3) is
obtained numerically by the STSPwith τ = τe =: 10−6 and h = he =: π

215
. For all the

methods, we fix h = he and vary τ = τ
j
k =: 101− j

10+k for j = 1, 2, 3 and k = 0, . . . , 90.
The errors eε

2(1), e
ε
H1(1) of the schemes LTSP, STSP and CNFD for the initial value

(4.2) with different values of ϑ are illustrated in Figs. 3 and 4, respectively. From these
figures we can see that: (i) For smaller values of ϑ , i.e., when the initial data is not
smooth enough, all the errors show a zigzag behavior due to happy error cancelation
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Fig. 3 Errors eε2(1) for the LTSP and STSP (left) and CNFD (right) in Case II for different values of ϑ in
(4.2)
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Fig. 4 Errors eε
H1 (1) for the LTSP and STSP (left) and CNFD (right) in Case II for different values of ϑ

in (4.2)
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or accumulation occurring. Order reduction occurs for all methods in this case. (ii) In
l2 norm, the LTSP is half-order convergent for H1 initial datum (cf. ϑ = 1 in Fig. 3),
which confirms the conclusion in Theorem 1. Meanwhile, it is first-order convergent
for ϑ ≥ 2, which is in line with Remark 2. (iii) The STSP is second-order convergent
in l2 norm for ϑ ≥ 4, while the CNFD recovers its second-order convergence only
when ϑ ≥ 5. (iv) For all the methods, to recover their classical orders of convergence,
the initial data is required to be more regular by one additional order when errors are
measured in H1 norm than in l2 norm.

4.2 Applications for long time dynamics

In this section, we apply the STSPmethod to investigate long time dynamics of LogSE
with Gaussian-type initial datum in 1D. To this end, we fix ε = 10−15, Ω = [−L, L],
h = 1

16 and τ = 0.001. The initial data is chosen as

u0(x) =
N∑

k=1

bke
− ak

2 (x−xk )2+ivk x , x ∈ R, (4.5)

where bk , ak , xk and vk are real constants, i.e, the initial data is the sum of N Gaussons
(1.5) with velocity vk and initial location xk .

Example 3 Here, we let λ = −1, L = 1000. We set N = 2 in (4.5) and consider the
following cases:

(i) x1 = −x2 = −5, vk = 0, bk = ak = 1 (k = 1, 2);
(ii) x1 = −x2 = −3, vk = 0, bk = ak = 1 (k = 1, 2);
(iii) v1 = −v2 = 2, x1 = −x2 = −30, bk = ak = 1 (k = 1, 2);
(iv) v1 = −v2 = 15, x1 = −x2 = −30, bk = ak = 1 (k = 1, 2);
(v) v1 = 1, v2 = 0, x1 = −40, x2 = 0, b2 = 2b1 = 1, ak = 1 (k = 1, 2);
(vi) v1 = 4, v2 = 0, x1 = −40, x2 = 0, b2 = 2b1 = 1, ak = 1 (k = 1, 2);
(vii) v1 = 25, v2 = 0, x1 = −100, x2 = 0, b2 = 2b1 = 1, ak = 1 (k = 1, 2);
(viii) v1 = 10, v2 = 0, x1 = −50, x2 = 30, b2 = 2b1 = 1, a1 = 1.2, a2 = 0.8.

Figure 5 shows the evolution of
√|uε(x, t)|, Eε

kin(t), E
ε
int(t) and Eε(t) as well as the

plot of |uε(x, t)| at different time for Cases (i)–(iv). While Fig. 6 illustrates those for
Cases (v)–(viii). Here, the kinetic energy Eε

kin and interaction energy Eε
int are defined

as:

Eε
kin(t) =

∫
Ω

∣∣∇uε(x, t)|2dx, Eε
int(t) = Eε(t) − Eε

kin(t).

From these figures we can see that: (1) The total energy is well conserved. (2)
For static Gaussons [i.e., vk = 0 in (4.5)], if they were initially well-separated, the
two Gaussons will stay stable as separated static Gaussons (cf. Fig. 5 Case i) with
density profile unchanged.When theyget closer, the twoGaussons contact andundergo
attractive interactions. Theymove to eachother, collide and stick together later. Shortly,
the two Gaussons separate and swing like pendulum. Small outgoing solitary waves
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Fig. 5 Plots of
√|uε(x, t)| (first column), |uε(x, t)| at different time (second column) and evolution of the

energies (third column) for different parameters in Example 3: Case i–Case iv (from top to bottom)

are emitted during the separation of the Gaussons. This wave-emitting ‘pendulum
motion’ becomes faster as time goes on (cf. Fig. 5 Case ii). (3) For moving Gaussons,
the two Gaussons are transmitted completely through each other and move separately
at last. Before they meet, the two Gaussons basically move at constant velocities
and preserve their profiles in density exactly if ak = −λ (While they will move
like breathers if ak = −λ (cf. Fig. 6 Case viii). During the interaction, there occurs
oscillation. Generally, the larger the relative velocity between the two Gaussons is,
the stronger the oscillation is (cf. Fig. 5 Cases iii–iv and Fig. 6 Cases vii–viii). After
collision, the velocities of Gaussons change (cf. Fig. 6 Cases v–vi). The two Gaussons
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Fig. 6 Plots of
√|uε(x, t)| (first column), |uε(x, t)| at different time (second column) and evolution of the

energies (third column) for different parameters in Example 3: Case v–Case viii (from top to bottom)

oscillate like breathers and separate completely at last (cf. Fig. 5 Cases iii–iv and Fig. 6
Cases vii–viii). In addition, small waves are emitted if the relative velocity is small
(cf. Fig. 5 Cases ii–iii and Fig. 6 Cases v–vi and viii). (4) For two Gaussons with
large relative velocity, their dynamics and interaction are similar to those of the bright
solitons in the cubic nonlinear Schrödinger equation [11]. While this is not true for
the Gaussons with small relative velocity, in which case additional solitary waves are
emitted after collision in the LogSE.
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Fig. 7 Plots of
√|uε(x, t)| (first column), |uε(x, t)| at different time (second column) and evolution of the

energies (third column) for different parameters in Example 4: Cases ix–xi (from top to bottom)

Example 4 Here, we let λ = 1 and L = 10, 000. We consider the following three
cases of parameters in (4.5):

(ix) N = 1, v1 = 10, x1 = 10, b1 = 1, a1 = 1;
(x) N = 2, v1 = 10, v2 = 0, x1 = −100, x2 = 0, b1 = 2, b2 = 1, a1 = a2 = 1;
(xi) N = 2, v1 = 20, v2 = 0, x1 = −100, x2 = 0, b1 = 2, b2 = 1, a1 = a2 = 1.

Figure 7 illustrates the evolution of
√|uε(x, t)|, Eε

kin, E
ε
int and Eε as well as the

plot of |uε(x, t)| at different time for Cases ix-xi. We would conclude from these
figures and other numerical experiments not shown here for brevity that: (1) The total
energy is conserved well. (2) Unlike the case of λ < 0 where the Gaussons behave
like solitary waves, the Gaussians in the case λ > 0 move and spread out (cf. Fig. 7).
In fact, for a single Gaussian, the analytical solution u(x, t) is given in (1.6). Figure 8
shows the errors of eε

μ(t) := ‖uε(·, t) − u(·, t)‖μ (μ = 2,∞, H1) defined similar
as those in (4.3)-(4.4), which again evidence the accuracy of the STSP scheme. In
addition, the rate of dispersion of the Gaussians could indeed be estimated for large
time dynamics in [18]. (3) The dynamics and interaction of two moving Gaussians
depend on the relative velocity. They will be separated completely and no solitary
waves are emitted if the relative velocity is large enough (cf. Fig. 7 Case xi). While
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Fig. 8 Evolution of errors
eε
H1 (t), e

ε
2(t) and e

ε∞(t) for
Case (ix) in Example 4

if the relative velocity is not large enough, i.e., when they move more slowly than
the speed they spread out, the Gaussians will be partially twisted together. Oscillation
is created and always there (cf. Fig. 7 Case x). This is consistent with the fact that
the convergence to a universal Gaussian profile (leaving out the oscillatory aspects,
which are not described in general) is very slow, as established in [18] (logarithmic
convergence in time).

5 Conclusion

We proposed and analyzed the regularized splitting methods and a regularized conser-
vative finite difference method (CNFD) to solve the logarithmic Schrödinger equation
(LogSE). For less regular initial setups, reduction of the standard order of accuracy for
these methods in temporal direction is proved theoretically for the regularized Lie–
Trotter splitting scheme, while also numerically observed for the regularized Strang
splitting and CNFD schemes. The method combining the regularized Strang-splitting
scheme in time and spectral discretization in space is then applied to investigate the
long time dynamics of Gaussians for both positive and negative λ. It turns out that
the interaction of Gaussons in the LogSE is quantitatively similar as the interaction
of bright solitons in the cubic nonlinear Schrödinger equation. However, there are
also some qualitatively different phenomena such as the breather-like dynamics and
the spreading-out behavior when λ < 0 and when λ > 0 in the LogSE, respectively.
Our numerical results demonstrate rich and complicated dynamical phenomena in the
LogSE.
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