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Abstract. In this paper, we propose an efficient and accurate method to compute the
ground state of 2D/3D rotating dipolar BEC by incorporating the Kernel Truncation
Method (KTM) for Dipole-Dipole Interaction (DDI) evaluation into the newly-develo-
ped Preconditioned Conjugate Gradient (PCG) method [9]. Adaptation details of KTM
and PCG, including multidimensional discrete convolution acceleration for KTM, choice
of the preconditioners in PCG, are provided. The performance of our method is con-
firmed with extensive numerical tests, with emphasis on spectral accuracy of KTM and
efficiency of ground state computation with PCG. Application of our method shows
some interesting vortex lattice patterns in 2D and 3D respectively.
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1 Introduction

The successful realization of Bose-Einstein condensates of gases of 52Cr [35], 164Dy [39]
and 168Er [3] provides the possibility to study and probe novel interesting phenomenon

∗Corresponding author. Email addresses: xavier.antoine@univ-lorraine.fr (X. Antoine),
qinglin tang@scu.edu.cn (Q. Tang), sunny5zhang@gmail.com (Y. Zhang)

http://www.global-sci.com/ 966 c©2018 Global-Science Press



X. Antoine, Q. Tang and Y. Zhang / Commun. Comput. Phys., 24 (2018), pp. 966-988 967

with dipolar quantum gas. Different from the early BECs of ultra cold atomic gases
whose properties are mainly governed by isotropic and short-range interatomic inter-
actions [48], in dipolar BEC, the magnetic/electric dipole-dipole interatomic interaction
is anisotropic and long-range, and it brings in unique phenomena, such as roton-maxon
spectrum [42, 49], vortex lattice patterns [45], and the self-bound droplet state [32, 52].
There is everlasting enthusiasm in studying both the ground state [6, 8, 12, 13, 29, 38, 51,
56–58] and dynamics [18, 24, 36, 43, 47] of dipolar BECs.

At temperatures T much smaller than the critical temperature Tc, the properties of
BEC with long-range dipole-dipole interactions (DDI) are well described by the macro-
scopic complex-valued wave function ψ(x,t) whose evolution is governed by the cele-
brating three-dimensional (3D) Gross–Pitaevskii equation (GPE) with a DDI term. More-
over, the 3D GPE can be reduced to an effective two-dimensional (2D) version if the
external trapping potential is strongly confined in the z-direction [13, 22]. In a unified
way, the dimensionless GPE with a DDI term in d-dimensions (d=2 or 3) for modeling a
dipolar BEC reads as [11, 12, 18, 33, 57]:

i∂tψ(x,t)=

[
−1

2
∇2+V(x)+β|ψ|2+λΦ(x,t)−ωLz

]
ψ(x,t), x∈R

d, t>0, (1.1)

Φ(x,t)=
(
Udip∗|ψ|2

)
(x,t), x∈R

d, t≥0, (1.2)

ψ(x,t=0)=ψ0(x), x∈R
d, (1.3)

where t is the time variable, x = (x,y)T ∈ R2 or x= (x,y,z)T ∈R3, ∗ represents the con-
volution operator with respect to the spatial variable, Lz =−i(x∂y−y∂x) =−i∂θ is the
z-component of the angular momentum and ω represents the rotating frequency. The
dimensionless constant β describes the strength of the short-range two-body interactions
in a condensate (positive for repulsive interaction, and resp. negative for attractive inter-
action), V(x) is a given real-valued external trapping potential which is determined by
the type of system under investigation. In most BEC experiments, a harmonic potential
is chosen to trap the condensate, i.e.,

V(x)=
1

2

{
γ2

xx2+γ2
yy2, d=2,

γ2
xx2+γ2

yy2+γ2
zz2, d=3,

(1.4)

where γx >0, γy >0 and γz >0 are dimensionless constants proportional to the trapping
frequencies in x-, y- and z-direction, respectively. Moreover, λ is a constant characterizing
the strength of DDI and Udip(x) is the long-range DDI potential. In 3D, Udip(x) reads as

Udip(x)=
3

4π|x|3
[

1− 3(x·n)2

|x|2
]
=−δ(x)−3∂nn

(
1

4π|x|

)
, x∈R

3, (1.5)

with n=(n1,n2,n3)T a given unit vector, i.e., |n(t)|=
√

n2
1+n2

2+n2
3 = 1, representing the

dipole axis (or dipole moment), ∂n = n·∇ and ∂nn = ∂n(∂n), while in 2D, it is defined
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as [11, 22]

Udip(x)=−3

2

(
∂n⊥n⊥−n2

3∇2
⊥
)( 1

2π|x|

)
, x∈R

2, (1.6)

where ∇⊥ = (∂x,∂y)T, n⊥ = (n1,n2)T, ∂n⊥ = n⊥ ·∇⊥ and ∂n⊥n⊥ = ∂n⊥(∂n⊥). In fact, for
smooth densities ρ(x) := |ψ(x)|2 , the DDI potential can be reformulated via the Coulomb
potential [13, 31] whose convolution kernel is Ucou(x)=

1
2d−1|x| . The 3D DDI is written as

follows

Φ(x)=−ρ−3∂n∂n

(
1

4π|x| ∗ρ

)
=−ρ−3

1

4π|x| ∗(∂n∂nρ), x∈R
3, (1.7)

and the 2D DDI is

Φ(x)=−3

2

1

2π|x| ∗[
(
∂n⊥n⊥−n2

3∇2
⊥
)

ρ], x∈R
2. (1.8)

The time dependent GPE (1.1)-(1.3) conserves two important quantities: the total mass
(or normalization) of the wave function

N (t) :=‖ψ(x,t)‖2 ≡N (0), (1.9)

and the energy per particle

E(ψ(x,t))=
∫

Rd

(
1

2
|∇ψ|2+V(x)|ψ|2+ λ

2
Φ|ψ|2−ωψ∗Lzψ

)
dx≡E(ψ(x,0)), t≥0. (1.10)

The ground state φg is defined as follows:

φg=argmin
φ∈S

E(φ), where S :=

{
φ(x) | ‖φ‖2 :=

∫

Rd
|φ(x)|2dx=1, E(φ)<∞

}
. (1.11)

There have been extensive mathematical and numerical studies on the ground state
of dipolar BEC, for an incomplete list we refer to [11–13, 19, 20, 24, 36, 57].

To compute the ground state, the main difficulties lie in (1) efficient ground state
solver especially for fast rotating speed ω and (2) accurate DDI fast solver. During the
last decade, there have been several numerical methods to compute the ground state of
non-dipolar rotating BEC, which includes the normalized gradient flow method [5,14,15],
Sobolev gradient method [27], Newton-like methods [23, 56], projection gradient flow
method [55], preconditioned gradient flow method [7] and Conjugate Gradient method
[49]. We refer to [13, 19] for their adaptations to dipolar BEC case. The efficiency of all
these methods suffers severely for fast rotating case. Recently, Antoine et al. [9] proposed
a preconditioned conjugate gradient method (PCG) for the rotating non-dipolar BEC, and
its performance for the fast rotating case is stable and extraordinarily efficient. The pre-
conditioner introduced there incorporates almost all the essential information, therefore
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iteration number drops down dramatically and is independent of domain and mesh size.
It is imperative to adapt such mechanism to rotating dipolar BEC.

The second challenge is the accurate and efficient evaluation of nonlocal potentials.
As is shown earlier, the DDI can be computed via the Coulomb potential. Starting from
the partial differential/pseudo-differential equation reformulation [16], on bounded rect-
angular domains with Dirichlet boundary conditions, the Discrete Sine Transform (DST)
method applies directly [12,13]. However, the accuracy of DST method depends linearly
on the domain size. Therefore, it requires a quite large domain and presents significant
challenges in both memory and CPU time, especially for 3D problems. In the last three
years, Jiang et al. [37], Exl et al. [31], Vico et al. [54] respectively proposed the NonUniform
Fast Fourier Transform (NUFFT) solver, Gaussian-Summation (GauSum) solver and Ker-
nel Truncation Method (KTM). They are all accurate (close to machine precision) and fast
(with a O(N log(N)) complexity, where N is the total number of grid points) and free of
boundary conditions for Φ. We refer to [10, 17, 19, 53] for extensions and applications of
such methods in the context of NLSE. Among them, KTM is the most simple one and has
been widely adopted by the physics community to compute the long-range interaction,
e.g., [49, 50]. In this paper, we adapt KTM to 2D/3D DDI with further simplification,
especially in efficiency, and generalize it to more general free-space convolution-type
potentials. The combination of PCG and KTM shall provide an accurate and efficient
scheme for rotating dipolar BEC.

The main objectives of this paper are threefold:

1. to adapt KTM to 2D/3D DDI via Coulomb potential (1.7)-(1.8), to improve the effi-
ciency by multidimensional discrete convolution with a twofold zero-padded wave
function (density) and to discuss its extensions to related quasi-2D convolution-
type potential encountered in dimension reduction of dipolar BEC [22];

2. to adapt PCG for computing ground states using KTM as DDI solver, to present de-
tailed optimal θn selection and preconditioners construction, and to verify numeri-
cally its performance, especially its efficiency with/without dependence of domain
and mesh size;

3. to apply our method to study the ground state of 2D and 3D rotating dipolar BEC
with different setups, and to investigate the vortex patterns.

The rest of the paper is organized as follows: In Section 2, we present a detailed
introduction of KTM, including its derivation, implementation and acceleration via mul-
tidimensional discrete convolution, and discuss its extension to other related nonlocal
convolution potentials. In Section 3, we propose an accurate and efficient scheme by
combing PCG and KTM, and give three different preconditioners. Extensive numerical
results are shown in Section 4 to confirm the performance of our method, together with
interesting vortex patterns in 2D and 3D rotating dipolar BEC. Finally, conclusions are
drawn in Section 5.
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2 Dipole-Dipole Interaction evaluation via KTM

In presence of a confining potential V(x), the wave function ψ(x) (also the density ρ)
is usually smooth and decays exponentially fast. Therefore it is quite convenient to ap-
proximate ψ on a truncated rectangular domain D instead of the whole space Rd. As is
shown by (1.7)-(1.8), the DDI computation boils down to Coulomb potential evaluation.
Therefore, in this section, we first give a review of KTM [50, 54] for Coulomb potential,
then discuss its extensions to other convolution potentials.

The KTM, also named as “supercell” method [50], is commonly used in the physics
community. The basic idea of KTM to compute nonlocal convolution potential on a finite-
size domain is to screen unnecessary interaction U(r) at large distance and to compute
potential generated by screened interaction which coincides with the originals. To be ex-
act, in order to compute Φ over D, we cut off the interaction outside a larger domain that
is usually chosen as a ball BG :={x||x|<G}, by simply setting U(x)=0,∀x∈Rd\BG, then
apply trapezoidal quadrature to the modified Fourier integral whose integrand is not sin-
gular any more. Very recently, it was analyzed by Vico et al. [54] and extended to many
important mathematical physics kernels including Coulomb, Helmholtz, biharmonic and
Laplace kernels.

To be precise, we have

Φ(x)=
∫

Rd
U(x−y)ρ(y)dy=

∫

D
U(x−y)ρ(y)dy=

∫

BG

U(y)ρ(x−y)dy

=
∫

Rd
UG(y)ρ(x−y)dy=

1

(2π)d

∫

Rd
ÛG(k)ρ̂(k)e

ik·xdk, x∈D, (2.1)

where D is the computational domain, UG(x)=U(x)χBG
(x), χBG

(x) is the characteristic
function on ball BG with radius G not less than the diameter of D.

The Fourier transform of the truncated 3D Coulomb kernel UG(x) =
1

4π|x|
χBG

(x) is

given exactly as follows

ÛG(k)=
∫

R3
UG(x)e

−ik·xdx= k−2(1−cos(kG)), k= |k|. (2.2)

One can see clearly that ÛG(k) is not singular at the origin and ÛG(0)= limk→0ÛG(k)=
G2

2 →∞ as G→∞. For the 2D Coulomb kernel, i.e., U(x)= 1
2π

1
|x| , the Fourier transform of

UG reads as follows [34]

ÛG(k)=2π
∫ G

0
J0(kr)U(r)rdr=

∫ G

0
J0(kr)dr

=
G

2

(
π J1(kG)SH0(kG)+ J0(kG) (2−πSH1(kG))

)
, (2.3)

where J0, J1 are Bessel functions of the first-kind with index 0 and 1, and SH0, SH1 are
Struve functions of order 0 and 1, respectively [1]. Similarly, there is no singularity in ÛG

and ÛG(0)= limk→0ÛG(k)=G.
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The optimal radius G is chosen as the diameter of D. For a rectangular domain D=

[−L,L]d, we have G= 2
√

dL, d= 2,3, which suggests that a threefold and fourfold zero-
padding of the density in each spatial direction is sufficient to guarantee spectral accuracy
for the 2D and 3D case, respectively. However, direct fourfold zero-padding in 3D brings
heavy burden on both memory and CPU time. In fact, with a precomputation, a twofold
instead of threefold/fourfold zero-padding is sufficient [54]. The overall computation
boils down to a 2D/3D discrete convolution. Taking the 3D case as an example, we have

Φijk = ∑
i1,j1 ,k1∈Λ

ρi1 j1k1
Ti−i1,j−j1,k−k1

, (i, j,k)∈Λ, (2.4)

where the convolution tensor Ti,j,k is computed as inverse discrete Fourier transform of

ÛG and is the same size as the discrete density ρ due to radial symmetry property of UG,
and the index set is Λ := {(i, j,k)

∣∣i= 1,··· ,Nx, j= 1,··· ,Ny, k= 1,··· ,Nz}, where Nx,Ny,Nz

is the number of grid points in x-,y- and z-direction, respectively. The multidimensional
discrete convolution can be accelerated with discrete Fast Fourier Transform (FFT) [26]
of size 8Ntot (Ntot := NxNyNz), thus making KTM optimal in terms of efficiency. The
acceleration algorithm is purely algebraic, which allows for an automatic implementation
as long as T is available.

It is worthwhile to point out that KTM applies readily once the Fourier transform of
the truncated kernel is available analytically or numerically. For example, the effective
2D convolution kernel that is derived from dimension reduction of Schrödinger system
[12, 18] reads as follows

U(r) :=
1

(2π)3/2

∫

R

e−s2/2

√
r2+s2ε2

ds=
1

ε(2π)3/2
e

r2

4ε2 K0(
r2

4ε2
), 0< ε<1, (2.5)

where K0(x) is the modified Bessel function of the second-kind. The Fourier transform
of its truncated kernel:

ÛG(k)=2π
∫ G

0
U(r)J0(kr)rdr, k∈R, (2.6)

can be evaluated via adaptive Gauss-Kronrod quadrature accurately. The above method
is readily applied to nonlocal potential generated by such kernel. The ground state of
quasi-2D dipolar BEC is to be studied later in another paper.

The accuracy of KTM when applied to 2D/3D DDI and 2D Coulomb potential is
confirmed numerically by the following two examples. Here, we consider the DDI with
a general dipole interaction kernel Udip(x) with two different dipole orientations n and
m as [20, 37, 40, 46]

Udip(x)=





−(n·m)δ(x)−3∂nm

(
1

4π|x|

)
, x∈R3,

− 3
2

(
∂n⊥m⊥−n3m3∇2

⊥
)(

1
2π|x|

)
, x∈R2.

(2.7)
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Here n= (n1,n2,n3)T and m = (m1,m2,m3)T are two given unit vectors representing the
two dipole orientations, m⊥ = (m1,m2)T, ∂m⊥ = m⊥ ·∇⊥ and ∂n⊥m⊥ = ∂n⊥(∂m⊥). In this
section, unless stated otherwise, we choose the mesh size as hx = hy = hz = h and denote
the mesh grid as Mh. The numerical accuracy is measured in relative l∞ norm over Mh

as follows

eh :=
‖Φh−Φexact‖l∞

‖Φexact‖l∞

=
maxx∈Mh

|Φh−Φexact|
maxx∈Mh

|Φexact|
, (2.8)

where Φh is the numerical solution obtained with mesh size h and Φexact is the exact
solution.

Example 2.1. Dipole-Dipole Interaction in 3D.

Choose the source density ρ(x)= e−|x|2/σ2
, with σ> 0. The 3D DDI with two dipole

orientations n and m in (2.7) can be given explicitly as

Φ(x)=−(n·m)ρ(x)−3∂nm

(
σ2
√

π

4

Erf(r/σ)

r/σ

)
=−(n·m)ρ(x)−3nT B(x)m, (2.9)

where the matrix B(x)=(bjl(x))
3
j,l=1 is given as

bjl(x)=

(
σ2

2r2
e
− r2

σ2 − σ3
√

π

4r3
Erf

( r

σ

))
δjl+xjxl

(
−3σ2

2r4
e
− r2

σ2 − 1

r2
e
− r2

σ2 +
3σ3

√
π

4r5
Erf

( r

σ

))
,

(2.10)
with δjl the Kronecker delta, x=(x1,x2,x3)T and Erf(r)= 2√

π

∫ r
0 e−s2

ds the error function.

We choose σ = 1.4 and compute Φ(x) on a uniform mesh grid of domain D := [−L,L]3

with mesh size h. Table 1 shows the relative errors of 3D DDI with different dipole axis,
i.e., n=(0.82778,0.41505,−0.37751)T and m=(0.31180,0.93780,−0.15214)T .

Table 1: Errors of 3D DDI with different dipole axis for different h and L.

h=2 h=1 h=1/2 h=1/4 h=1/8

L=6 9.5386E-01 5.3366E-02 1.3839E-06 3.2303E-09 2.4007E-09

L=8 9.5256E-01 5.6188E-02 1.1920E-06 4.6919E-16 6.8574E-16

L=10 9.3653E-01 5.7520E-02 1.0087E-06 4.6919E-16 6.8574E-16

Example 2.2. Dipole-Dipole Interaction and Coulomb potential in 2D.

Choose the source density as ρ(x)= e−|x|2/σ2
, with σ> 0. The exact 2D Coulomb po-

tential is

Φ(x)=

√
πσ

2
I0

( |x|2
2σ2

)
e
− |x|2

2σ2 , (2.11)
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and the exact DDI with two dipole orientations n⊥ and m⊥ in (2.7) is given below [37]:

Φ(x)=
3
√

πe−r

4σ

[
(n⊥ ·m⊥)(I0(r)− I1(r))−

2(x·n⊥)(x·m⊥)
σ2

(
I0(r)

− 1+2r

2r
I1(r)

)]
+

3
√

πn3m3re−r

σ

[
I0(r)− I1(r)−

I0(r)

2r

]
, (2.12)

where r= |x|2
2σ2 , I0 and I1 are the modified Bessel functions of order 0 and 1, respectively

[1]. Here, we choose σ=
√

1.2 and dipole axis as n⊥=(0,−0.896)T , n3 = 0.44404, m⊥=
(0,−0.52476)T and m3 = 0.85125. Table 2 shows the errors of 2D Coulomb potential and
DDI obtained with different mesh size h on domain D :=[−L,L]2.

Table 2: Errors of 2D Coulomb potential and DDI with mesh size h on [−L,L]2.

Coulomb h=2 h=1 h=1/2 h=1/4 h=1/8

L=6 2.0755E-01 2.3719E-03 2.5991E-08 1.7040E-14 1.3523E-14

L=8 2.0822E-01 2.3739E-03 2.7514E-08 5.7180E-16 6.8616E-16

L=10 2.0817E-01 2.3753E-03 2.7380E-08 5.7180E-16 5.7180E-16

DDI h=2 h=1 h=1/2 h=1/4 h=1/8

L=6 3.7070E-01 2.1327E-02 1.4924E-06 5.7662E-12 5.1021E-12

L=8 2.8520E-01 1.7927E-02 1.2507E-06 7.6786E-15 9.1201E-15

L=10 2.5439E-01 1.9208E-02 9.4564E-07 9.6718E-15 9.6164E-15

From Tables 1-2 and additional results not shown here, we can see clearly that KTM
is capable of accurate evaluation of 2D/3D DDI (up to machine precision) with optimal
efficiency achieved with FFT.

3 Numerical method

In this section, we propose an efficient and accurate numerical method for computing the
ground state by combining PCG method and KTM for DDI evaluation.

3.1 Discretization

To numerically solve the minimization problem, the wave function φ∈ L2(Rd) shall be
discretized. High spatial resolution schemes are required due to the presence of vortices
in fast rotating system. High order finite difference/element schemes were proposed to
compute the ground states of the rotating BEC without DDI [27, 28]. Here we apply the
standard Fourier pseudo-spectral discretization [13, 14]. To this end, we first truncate
the wave function to a bounded rectangular domain D with periodic B.C. To simplify
the notation, we only present the 2D discretization, extension to higher dimension is
straightforward. Let us set D= [Lx,Rx]×[Ly,Ry] and let M and N be two positive even
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integers. We fix hx =
Rx−Lx

M and hy =
Ry−Ly

N as the mesh sizes in the x- and y-directions,
respectively. Define the following sets of indices and grids points

OMN =
{
(m,n)∈N

2 |0≤m≤M, 0≤n≤N
}

,

ÕMN =
{
(p,q)∈N

2 |−M/2≤ p≤M/2−1, −N/2≤q≤N/2−1
}

,

Qxy=
{
(xm,yn)=: (Lx+mhx,Ly+nhy), (m,n)∈OMN

}
.

Moreover, we introduce the following functions

Tpq(x,y)= eiνx
p (x−Lx) eiν

y
q (y−Ly), with νx

p =
2πp

Rx−Lx
, ν

y
q =

2πq

Ry−Ly
, (p,q)∈ÕMN . (3.1)

Define fmn =: f (xm,yn) as the value of an abstract function f (x,y) at grid (xm,yn)∈Qxy

and f as the vector with components { fmn, (m,n)∈OMN}. The Fourier pseudo-spectral
approximations of φ at Qxy and the operators ∆ & Lz read as:

φmn≈ φ̃mn=
M/2−1

∑
p=−M/2

N/2−1

∑
q=−N/2

(̂φ̃)pqTpq(xm,yn), (m, n)∈OMN , (3.2)

(∆φ)mn≈ (J∆Kφ̃)mn=
M/2−1

∑
p=−M/2

N/2−1

∑
q=−N/2

(
(νx

p)
2+(ν

y
q )

2
)
(̂φ̃)pqTpq(xm,yn), (3.3)

(Lzφ)mn≈ (JLzKφ̃)mn=ω
M/2−1

∑
p=−M/2

N/2−1

∑
q=−N/2

(xmν
y
q −ynνx

p)(̂φ̃)pqTpq(xm,yn), (3.4)

where (̂φ̃)pq is the discrete Fourier transform coefficient of the vector φ̃. By further defin-

ing the vector JVK, J|φ̃|2K and JΦ̃K as

(JVK)mn=Vmn, (J|φ̃|2K)mn= |φ̃mn|2, (JΦ̃K)mn= Φ̃mn, (3.5)

the Hamiltonian operator Hφ and the total energy are discretized as following

Hφ ≈ H̃φ̃=−1

2
J∆K+JVK+βJ|φ̃|2K+λJΦ̃K−ωJLzK, (3.6)

E(φ)≈Ẽ (φ̃)=
〈

φ̃,H̃φ̃φ̃
〉
− 1

2
β
∥∥J|φ̃|2K

∥∥2− 1

2
λ
〈
JΦ̃K,J|φ̃|2K

〉
. (3.7)

Here, 〈·, ·〉 and ‖·‖ are the standard CMN inner product and l2 norm, respectively. More-
over, Φ̃ is the approximation of Φ with density ρ= |φ|2 replaced by ρ̃= |φ̃|2 and is numer-
ically evaluated by KTM. Hereafter, to simplify the presentation, we omit the “∼” and
drop the brackets in the operators. Moreover, we denote fn as the value of f at the n-th
(n≥0) step in an iterative algorithm.
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3.2 The preconditioned conjugate gradient (PCG) method

The classical approaches coming from PDE theory to compute the ground state of a BEC
are mainly based on directly solving the corresponding imaginary-time equation (ITE)
[25]. As such, these methods lack the insight of minimization algorithms. The spherical
constraint makes minimization problem (1.11) non-convex and hinders the application
of classical minimization algorithms. Nevertheless, the general theory of optimization
algorithm on Riemannian manifolds has been developed in [2,30]. Recently, following the
approaches in [2, 30], Antoine et al. proposed a (constrained analogues) preconditioned
conjugate gradient algorithm on the manifold S to compute the ground states of rotating
BEC without DDI [9]. Here, we extend this approach by integrating KTM (in Section 2)
to compute the ground states of rotating dipolar BEC.

Assume P is an arbitrary symmetric definite preconditioner which will be determined
later, the preconditioned conjugate gradient method to solve the minimization problem
(1.11) is listed in Algorithm 1.

Algorithm 1 The preconditioned conjugate gradient method

n=0, given initial data φn

while not converged do
µn =

〈
Hφn φn,φn

〉

rn =Hφn φn−µnφn

β
cg
n =Re〈rn−rn−1,Prn〉/〈rn−1,Prn−1〉

β
cg
n =max(β

cg
n ,0)

dn=−Prn+β
cg
n pn−1

pn=dn−Re〈dn,φn〉φn

θn =argminθE (cos(θ)φn+sin(θ)pn/‖pn‖)
φn+1=cos(θn)φn+sin(θn)pn/‖pn‖
n=n+1

end while

Here, Re f denotes the real part of f . To find θn, one can generally perform the line-
search

θn =argmin
θ

E (cos(θ)φn+sin(θ)pn/‖pn‖), (3.8)

which is a one-dimensional minimization problem. Since E(θ) is not a quadratic function,
this nonlinear minimization problem usually requires a number of evaluations. However,
one can explicitly write out the formula of E(θ) in terms of sin(θ) and cos(θ). All the re-
sulted coefficients that require FFTs could be pre-computed. Since the FFT step dominates
the computation cost when computing the energy, the evaluation of E(θ) at many points
does not increase the cost significantly than the evaluation at a single point. Hence, it is
feasible to use a standard one-dimensional minimization routine to solve (3.8).
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Alternatively, we can also obtain a simple and cheaper approximation of θn. To this
end, expanding E(θn) up to second order in θn, we have

E(θn)=:E(φn+1)=E(cos(θn)φn+γn sin(θn)pn)

≈E(φn)+2γnθnRe
〈

pn, Hφn φn

〉−θ2
n

(
µn−γ2

n

〈
pn, Hφn pn

〉−γ2
nRe〈gn, pn〉

)
. (3.9)

Here, γn = 1/‖pn‖, and gn = 2(βρn
pφ+λUdip∗ρn

pφ) φn with ρn
pφ =Re(φn p̄n). First, we

check if the coefficient of the first-order term is positive. If so, we set β
cg
n = 0, i.e., using

the preconditioned steepest descent (PSD) method [9], and choose a sufficiently small
value for θn. With this choice, noticing that P is positive definite and 〈φn,rn〉=0, one can
easily obtain that

2γnRe
〈

pn,Hφn φn

〉
=

2Re〈pn,rn+µnφn〉
‖pn‖

=
2Re〈dn−Re〈dn,φn〉φn,rn+µnφn〉

‖dn−Re〈dn,φn〉φn‖

=− 2Re〈rn,Prn〉
‖dn−Re〈dn,φn〉φn‖

<0. (3.10)

Hence, the energy decreases for a sufficiently small θn. Otherwise, we check further if the
second-order term is positive, i.e.,

µn <γ2
n

(〈
pn, Hφn pn

〉
+Re〈ρ̃n, pn〉

)
. (3.11)

If so, minimizing (3.9) with respect to θn yields

θ
opt
n =

γnRe
〈

pn,Hφn φn

〉

µn−γ2
n

(〈
pn, Hφn pn

〉
+Re〈gn, pn〉

) . (3.12)

If (3.11) is not fulfilled, again we set β
cg
n = 0 and choose a sufficiently small θn. This

approach guarantees the energy decay and hence the convergence of the algorithm.
In our numerical test, we found that this precautions of checking and using a step size

control mechanism are useful in the first stage of the algorithm to locate the neighborhood
of a minimum. Once a minimum is approximately located, both (3.10) & (3.11) are always
fulfilled and the step size choice (3.12) always decreases the energy.

The discretization of the minimization problem (1.11) on a fixed fine mesh usually
leads to a problem of huge size. Besides, starting for any commonly used initial data
(Gaussian-type functions with phase imprinting, Thomas-Fermi approximation or their
combinations), which are not a good initial guess especially for fast rotating systems, it
usually takes relatively long time for the PCG scheme to converge. These together make
the computation expensive, especially for high dimensional case. A useful technique is to
apply the cascadic multi-grid method [21]. The approach is as follows: starting from any
commonly used initial data, employ the PCG algorithm to compute the ground state on
a coarsest mesh with grid number Np×Np (Np =2p). Denote the corresponding ground

state as φ
p
g . Next refine the mesh by half, i.e., with Np+1×Np+1 mesh grids. Interpolate φ

p
g
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on the refined grid points to get a new initial data and call PCG again to obtain φ
p+1
g , keep

repeating this process until the finest grid N×N is reached. The approach is summarized
in Algorithm 2

Algorithm 2 The cascadic multigrid PCG method

given an initial grid number N=2p and initial mesh Qp
xy

given an initial data φ
p
0 on Qp

xy

while not reach the finest mesh do
launch Algorithm 1 to compute the GS at level p: φ

p
g

interpolate φ
p
g at the refined mesh Qp+1

xy , denoted as φ̃
p
g

set φ
p+1
0 = φ̃

p
g

p= p+1
end while

A ground state at coarser level usually will provide a much better initial data for
the refined level than the commonly-used initial guess, hence a faster convergence is ex-
pected. This is actually confirmed by the numerical test in Example 4.3, which shows nu-
merically that cascadic multigrid approach is more likely to converge faster to a ground
state with lower energy than the fix-grid approach.

3.3 Stopping criteria and preconditioner

As discussed in [9], there are three types of stopping criteria one can use. A commonly
used one is based on

φ∞
err :=‖φn+1−φn‖∞ ≤ ε. (3.13)

The other possible two are based on the norm of the symmetric-covariant residual

rn,∞
err :=‖rn‖∞ ≤ ε, (3.14)

or the symmetry-invariant energy difference

En,∞
err := |E(φn+1)−E(φn)|≤ ε. (3.15)

Stopping criteria (3.13) is commonly used in the numerical schemes based on solving the
ITE [25]. However, this could be problematic if the minima are not isolated but form a
continuum due to symmetries. For instance, when the dipole orientation is parallel to the
rotating axis, the energy has rotational invariance. The third one (3.15) converges faster
than the other two: assume φ∗ is a minimum, then

E(φn)−E(φ∗)=O(‖φn−φ∗‖2).
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Extensive numerical results show that a criteria based on (3.13) or (3.14) would lead to
long computational times, especially for large rotation ω, even without changing the total
energy. Hence, in this paper, we always use the energy based stopping criteria (3.15).

The preconditioner P, which acts on the descent direction rn, is to make rn point closer
to the minimum. It should be an approximation of the inverse of the Hessian matrix of
the problem. If no preconditioner is applied, we denote P as

PI = I, (3.16)

where I is the identity matrix. Similar to [9], there are three other types of preconditioner.
Here we simply list their formula and properties. For a detailed analysis, we refer to [9].

Kinetic energy preconditioner. The first one is to use only the kinetic energy term

P=P∆=(α∆−∆/2)−1, (3.17)

where α∆ is a positive shifting constant to construct an invertible operator. Here we
choose as

α∆ = µ̃n :=−1

2
〈φn,∆φn〉+

〈
V , |φn|2

〉
+β

〈|φn|2, |φn|2
〉
+
∣∣λ

〈
Φn,|φn|2

〉∣∣. (3.18)

On a fixed computational domain, the effect of this preconditioner is to make the number
of iterations independent of the mesh size h. However, this operator is not bounded
in the whole space Rd. In fact, the number of iterations increases as L increases. In
addition, when β or λ is large, the nonlinear terms become dominant. The kinetic energy
preconditioner becomes inefficient if any of the parameters β, λ or L is large.

Poten-Int energy preconditioner. The second approach is to use the potential and in-
teraction energy terms for the preconditioner:

P=PV =
(

αV+V+β|φn|2+|λ|(1+sign(Φn))Φn/2
)−1

. (3.19)

Similarly, αV is a positive shifting constant to construct an invertible operator. We found
that it is efficient to use αV = µ̃n, and we always use this parameter for the corresponding
numerical tests. Dual to the kinetic energy preconditioner, in terms of iteration number,
the performance of this preconditioner deteriorates as the spatial resolution is increased
(i.e., mesh size h is decreased). However, it is stable when L, β or λ is increased.

Combined preconditioner. A third approach is to combine the two previous ones:

P=PC=P1/2
V P∆P1/2

V . (3.20)
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This preconditioner has a stable performance independent of both the domain size L
and/or the spatial resolution (mesh size h).

The performance of these preconditioners are confirmed in the numerical Example
4.1. The Combined preconditioner outperforms the other two, especially for small mesh
sizes h and large domain sizes L, which is indeed necessary for computing ground states
of the BECs with a fast rotation ω and large nonlinearity β. Therefore, in the practical
computations, we always choose the Combined preconditioner.

4 Numerical results

Firstly, we denote the method by PCGν (ν = I,∆,V) when the preconditioner Pν (3.16)-
(3.20) is integrated in the PCG algorithm (Algorithm 1). Similarly, we denote by Multi-
PCGν if the cascadic multigrid algorithm is applied (Algorithm 2). We also define #iter
as the number of iterations for PCGν to converge, and shall always adopt the stopping
criteria (3.15).

In the following numerical test, unless stated otherwise, we fix ε=10−14 and let

V(x)= |x|2/2, x∈D=: [−L,L]d. (4.1)

For the initial data, there are 10 types of frequently used initial data:

(a) φa(x)=
1√
π

e−
|x|2

2 , (b) φb(x)=(x+iy)φa(x), (b̄) φb(x)= φ̄b(x), (4.2)

(c) φc(x)=
φa(x)+φb(x)

‖φa(x)+φb(x)‖
, (c) φc̄(x)= φ̄c(x), (4.3)

(d) φd(x)=
(1−ω)φa(x)+ωφb(x)

‖(1−ω)φa(x)+ωφb(x)‖
, (d) φd̄(x)= φ̄d(x), (4.4)

(e) φe(x)=
ωφa(x)+(1−ω)φb(x)

‖ωφa(x)+(1−ω)φb(x)‖
, (e) φē(x)= φ̄e(x), ( f )

φTF
g (x)

‖φTF
g (x)‖ , (4.5)

where

φTF
g =

{ √
(µTF

g −V(x))/β, V(x)<µTF
g ,

0, otherwise,
µTF

g =
1

2

{
(4βγxγy/π)1/2, d=2,

(15βγxγyγz/4π)2/5, d=3.

(4.6)
In the following examples, except Example 4.3, we choose the initial data as type (d)

if β<500 and type ( f ) otherwise. The algorithms were implemented in Matlab (Release
8.1.0), and run on a 2.27GH Intel(R) Xeon(R) CPU E5520 with a 8 MB cache in Debian
GNU/Linux.

Example 4.1. Here, we compare the performance of PCGν (ν = I,∆,V) with respect to
different domain sizes L and mesh sizes hx = hy = h = 2−p. To this end, we take d =
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Figure 1: Example 4.1. Number of iterations for PCGν (ν= I,∆,V) vs. mesh size h.

2, ω = 0, β = 250, λ = 100 and n = (1,0,0)T . Fig. 1 shows the total iteration number of
these schemes with different h and L. From this figure and additional numerical results
not shown here for brevity, we can see that: (i). Preconditioned algorithms outperform
its unpreconditioned counterparts. (ii) The Poten-Int energy preconditioner PV enables
the solver to stabilise the performance as L increases for a fixed h. On the contrary, the
kinetic energy preconditioner P∆ prevents the deterioration as h decreases for a fixed
L. However, the performance of PCGV (PCG∆) worsens as h decreases for a fixed L (as L
increases for a fixed h). These observations confirm our expectation in Subsection 3.3. (iii)
The Combined preconditioner PC makes the solvers performance almost independent of
both L and h, and outperforms all the others. In the following examples, we always use
PC.

Example 4.2. In this example, we investigate the performance of PCGC for different in-
teraction parameters β & λ. To this end, we take d=2, ω=0, L=24 and hx=hy=1/8. We
consider the following three cases:

Case 1. Fix β and vary λ. Here, we take β=7500, 12500 & 25000.

Case 2. Fix λ and vary β. Here, we take λ=500, 2000 & 4000.

Case 3. Fix the γ= λ
β , vary both λ and β. Here, we consider γ=0.25, 0.5 & 0.95.

Fig. 2 illustrates the number of iterations of PCGC for Cases 1-3. From this figure and
other numerical experiments now shown here, we can see that: (i) When λ increases (cf.
Fig. 2 (a) & (c)), the iteration number also increases. Although the increment is small,
it still implies a weak dependence on λ. Hence, the Poten-Int energy preconditioner PV

should be analyzed and investigated further to remedy this dependence. (ii) For a fixed
λ (cf. Fig. 2 (b)), the iteration number for PCGC actually oscillates in a small regime,
which shows the very slight dependence on β. Nevertheless, the dependence on β (also
on λ) would generally become stronger for a rotating system, i.e., ω 6= 0. It would be
quite interesting trying to construct a robust preconditioner that also includes the rotating
effects to get a weaker ω-dependence. We leave it as future work.
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Figure 2: Example 4.2. Number of iterations to converge in PCGC for Cases 1-3.

Example 4.3. Since all the algorithms we discussed are local minimisation algorithms,
inappropriate initial guess might lead to a local minimum. Here, we consider the effect
of different initial data (a)–(e) on the final converged stationary states. We also compare
the performance of PCGC (Algorithm 1) and Multi-PCGC (Algorithm 2) schemes. To this
end, we take d= 2, λ= 50, β= 200

√
5/π, n=(1,0,0)T and L= 12. For PCGC, we let the

mesh size hx = hy =
3

32 , i.e., grid number N=256. For Multi-PCGC, we set the coarsest &
finest mesh with grid number N=64 & N=256, respectively.

Tables 3 and 4 list respectively the energies obtained by PCGC and Multi-PCGC for
different initial data and ω. The underline ones are the lowest energies of the converged
states φg(x) and the corresponding CPU times are listed in the same table. Meanwhile,
the contour plots of the corresponding density |φg(x)|2 are shown in Fig. 3. From these

tables and figures, we can see that: (i) Usually, algorithms with initial data of type (d) or
(d) converges to the stationary states with the lowest energy. (ii) The cascadic multi-grid

Table 3: Example 4.3. Fixed grid PCGC (with N= 28): converged energies and the CPU times (seconds) for
the solution with lowest energy (which is underlined).

ω (a) (b) (b) (c) (c) (d) (d) (e) (e) CPU

0.6 5.7753 5.7762 5.7826 5.783 6.7723 5.783 5.7723 5.783 5.7723 1045

0.7 5.3678 5.3448 5.3444 5.3415 5.3415 5.3415 5.3415 5.3415 5.3444 3270

0.8 4.7282 4.7282 4.7285 4.7285 4.7285 4.7285 4.7282 4.72852 4.7282 1368

0.9 3.773 3.773 3.773 3.773 3.773 3.773 3.773 3.773 3.773 1167

Table 4: Example 4.3. Cascadic multigrid Multi-PCGC (starting from the coarsest grid N=26 to the finest grid

N=28): converged energies and the CPU times (seconds) for the solution with lowest energy (underlined).

ω (a) (b) (b) (c) (c) (d) (d) (e) (e) CPU

0.6 5.7651 5.7651 5.7826 5.7723 5.7723 5.7723 5.7651 5.7723 5.7723 240

0.7 5.3415 5.3415 5.3415 5.3415 5.3415 5.3415 5.346 5.3415 5.3444 1114

0.8 4.7282 4.7282 4.7282 4.7282 4.7282 4.7285 4.7282 4.7282 4.7282 270

0.9 3.7769 3.773 3.773 3.773 3.773 3.773 3.773 3.773 3.773 579
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Figure 3: Contour plots of |φg(x)|2 corresponding to the lowest energies in Table 4.

approach is more robust than the fix-grid one. It outperforms the fix-grid approach in
terms of CPU time and provides the possibility to obtain a stationary state with lower
energy.

Example 4.4. Here, we apply the Multi-PCGC algorithm to compute the ground states
of 2D rotating BEC with different n and ω. To this end, the domains are chosen as
D = [−12,12]2 and the coarsest and finest grids number are set to N = 64 & N = 256,
respectively. We set n = (cosθ,sinθ,0)T , β = (250−λ)

√
5/π and consider two cases: (i)

Case 1: let ω = 0.7, vary λ and θ. (ii) Case 2: let ω = 0.9, vary λ and θ. (iii) Case 3: let
λ = 100, ω = 0.7 and/or 0.9, vary θ. Figs. 4 & 5 show the contour plots of the ground
states |φg|2 for Cases 1 & 2. From this figure, we can see that the dipole-dipole interac-

Figure 4: Example 4.4. Contour plot of the density |φg|2 of the ground states of the 2D rotating dipolar BEC

with λ=250, 175, 100 (top to bottom) in Case 1 for θ=0, π
6 , π

2 ,− π
6 (left to right).
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tion affects the ground states essentially. For fixed ω, the stronger the DDI strength, the
less the number of vortices due to the “partially attractive” nature of the DDI. Moreover,
the Abrikosov vortex lattice for rotating non-dipolar BEC is no longer valid in BEC with
strong DDI, instead the rectangular vortex lattice appear. The vortex lattice orientation
are parallel to the dipole orientation. Indeed, the presence of DDI brings about a much
more rich phase diagram for ground states. However, to our best knowledge, a thorough
study of the structure of the vortex lattice is still lacking to date. This might be tackled in
future with the help of our efficient numerical scheme.

Figure 5: Example 4.4. Contour plot of the density |φg|2 of the ground states of the 2D rotating dipolar BEC

with λ=250, 175, 100 (top to bottom) in Case 2 for θ=0, π
6 , π

2 ,− π
6 (left to right).

Example 4.5. Here, we apply the Multi-PCGC to solve a more difficult problem. We com-
pute the ground state of BEC with very large nonlinearity and fast rotation. To this end,
we let ω= 3.5, β= 5000, λ= 3000 and n=(cosθ,sinθ,0)T. For comparison, we also com-
pute the one with λ=0 (other parameters are kept unchanged). The trapping potential is
chosen as the harmonic plus quartic potential [9, 27, 58]

V(x)=(3|x|4−4|x|2)/40. (4.7)

The domain size, coarsest and finest grids number are chosen as L = 12, N = 64 and
N=512, respectively.

Fig. 6 depicts the contour plot of the density function |φg(x)|2 for different λ & θ. From
this figure, we can see that: (i) When DDI is absent, the structure of the density profile
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Figure 6: Example 4.5. Contour plot of the density |φg|2 of the ground states of the 2D rotating BEC with

ω = 3.5, β= 5000 and different λ & n=(cosθ,sinθ,0)T . The CPU cost for these three cases are respectively:
9478s (left), 77500s (middle) and 58795s (right).

is a perfect annulus, with uniformly distributed vortices. (ii) When DDI is present, the
annular structure of the density is still maintained by the strong isotropic potential and
the centrifugal force field due to the high rotation. However, the local structure of the
vortex lattice is modified because of the DDI. Vortices are rearranged and aligned along
the dipole orientation.

Example 4.6. Here, we compute the ground states in 3D. To this end, we take L=8 and
apply the Multi-PCGC with coarsest grids number N=32 and finest one N=128. We take
β=401.432, and consider the following six cases:

(i) ω=0.7, λ=0.9β and n=(0,0,1)T ; (ii) ω=0.7, λ=0.9β and n=(1,0,0)T ;

(iii) ω=0.8, λ=0.9β and n=(0,0,1)T; (iv) ω=0.8, λ=0.9β and n=(1,0,0)T;

(v) ω=0.9, λ=0.5β and n=(0,0,1)T ; (vi) ω=0.9, λ=0.5β and n=(1,0,0)T .

Fig. 7 shows the corresponding isosurface |φg(x)|2 = 4E−4 and the surface plot of
|φg(x,y,z = 0)|2 for these six cases. The CPU times for these six cases are respectively
5418s, 6845s, 5073s, 4404s, 23408s, 5289s. From the figure, we can see that the DDI modi-
fies the density profile of the ground state significantly. The density profile are elongated
along the dipole orientation n (cf. Fig. 7 (i) & (iii)). Besides, the vortex lines are always
parallel to the rotation axis, with the vortex lattice orientated also along the dipole axis n
(cf. Fig. 7 (iii) & (iv)).

5 Conclusion

We proposed an original preconditioned conjugated gradient (PCG) algorithm integrated
with a newly developed kernel truncation method (KTM) for nonlocal potential evalu-
ation to compute the ground states of rotating dipolar BECs. The KTM is numerically
proved to be spectrally accurate and efficient. The resulted PCG-KTM algorithm, which
is simple to implement, turns out to be robust and accurate. It is very efficient to com-
pute the ground states of GPE with high nonlinearities in both the contact interaction and
DDI, even for realistic 3D problems with fast rotation. Our numerical methods provide a
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(i)

(ii)

(iii)

(iv)

Figure 7: Example 4.6. Isosurface |φg(x)|2=4e−4 ((i) & (iii)) and surface plot of |φg(x,y,z=0)|2 ((ii) & (iv))
for the six cases (top to bottom then left to right). The CPU cost for these six cases are respectively 5418s,
6845s, 5073s, 4404s, 23408s, 5289s.

useful tool to investigate the complicated phase diagram of the ground states of various
fast rotating dipolar systems.
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