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ABSTRACT
The aim of this paper is to describe concisely the recent theoretical and numerical developments
concerningabsorbing boundary conditions and perfectlymatched layers for solving classical and rel-
ativistic quantumwavesproblems. Theequations considered in this paper are the Schrödinger, Klein–
Gordon and Dirac equations.

1. Introduction

The aim of this paper is to discuss how to build and
discretise absorbing boundary conditions (ABCs) and
perfectly matched layers (PMLs) [1–3] to truncate an
unbounded spatial computational domain, when solving
partial differential equations arising in atomic, molecu-
lar and laser physics. More specifically, the equations that
will be considered are the Schrödinger, Klein–Gordon
and Dirac equations in their simplest form. The goal here
is not to give all the technical mathematical details, but
rather to give a comprehensive introduction to the topic,
from both the modelling and computational points of
view. For the equations above, many questions remain
still open and constitute some advanced developments in
mathematical analysis and computational physics.

To motivate the need to develop such theoretical anal-
ysis, we first consider an example to understand why such
boundary conditions are required for a practical com-
putation. Let us introduce the following general scalar

CONTACT X. Antoine xavier.antoine@univ-lorraine.fr

Schrödinger system:⎧⎨⎩
i∂tψ + �ψ + V(x, t )ψ = 0 , (x, t ) ∈ R

d
x × [0;T],

lim||x||→∞ ψ(x, t ) = 0, t ∈ [0;T ],
ψ(x, 0) = ψ0(x) , x ∈ R

d
x .

(1)

In the above system, ψ := ψ(x, t ) is the complex-valued
wave function to be computed, the spatial variable is x ∈
R

d (d � 1) and the time variable is t > 0, T being a maxi-
mal time of computation and i := √−1. Various possible
potentials V could be considered:

� V(x, t ) = V (x, t ) ∈ C∞(Rx × [0;T], R), the space
of infinitely differentiable functions, is a real-valued
potential (e.g. V (x, t ) = Vc(x) + x · E(t ) for mod-
elling the action of external electric field E in
length gauge, with an usual regularised interac-
tion potential Vc(x) in order to strictly satisfy the
mathematical constraints; see [4] for instance in a
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Figure . Example of the one-dimensional Schrödinger equationwith a linear potential (V(x)= x): truncating the physical domainwith an
unsuited boundary condition generates some spurious unphysical reflections at the fictitious boundaries x� = − and xr = . (a) Exact
reference solution. (b) Numerical solution with a Dirichlet boundary condition.

simple framework; the regularity assumption could
in fact be strongly weakened in the following devel-
opments, in particular in the domain �),

� V(x, t ) = f (ψ)(x, t ) is a nonlinear potential (e.g. a
cubic nonlinearity: V(x, t ) = β|u(x, t )|2),

� or a combination of both situations: V(x, t ) =
V (x, t ) + f (ψ)(x, t ).

We also assume that the initial wave function ψ0 is com-
pactly supported (that is ψ0 is localised in space; some
developments for non-compactly supported initial data
are available in [5,6]).

For numerical considerations, the initial problemmust
be solved in a bounded domain �. If the physical phe-
nomena is not confined within a finite domain, prob-
lems indeed arise. Let us for example consider the fol-
lowing one-dimensional case (d = 1): V(x) := V (x) =
x is a linear potential and the initial wave function is
a Gaussian beam ψ0(x) = e−x2+10ix (almost compactly
supported numerically). A simple way to solve Prob-
lem (1) is to introduce a bounded spatial computational
domain, e.g. � � ] − 5; 15[ and to set homogeneous
Dirichlet boundary conditions : ψ|�T = 0, i.e. we impose
0 on �T, where the boundary �T is simply defined here
by�T � �� × [0; T], with� � �� = {− 5; 15} and T=
2. We report in Figure 1(a) the amplitude of the reference
numerical solution |ψ | as a function of time computed
on a large domain (so that we do not see the perturba-
tion of the boundary conditions) and restricted here to
�T � � × [0; T], and in Figure 1(b) the numerical solu-
tion to the bounded problem on �T with homogeneous
Dirichlet boundary conditions at �T. Both approaches
use a second-order finite-difference scheme in space and
a Crank–Nicolson scheme in time [7]. As we can observe,

since the wave field ψ strikes the right boundary xr � 15
at T � 0.25, then some numerical reflections occur. This
is due to theDirichlet boundary conditionwhich does not
mimic the property that the wave is outgoing to the com-
putational domain, and actually acts like a ‘wall’. At T =
1.4, some new reflections appear at the left point x� � −5
and so on, the computational domain acting as a quantum
wave guide structure.

From this example, it is clear that a suitable exact or
approximate boundary condition must be imposed at the
endpoints of the computational domain to avoid artificial
reflections. We introduce a computational domain �T �
]x�, xr[ × [0; T] and a fictitious boundary �T � �� =
{xl, xr} × [0; T]. The potential is usually a non-supported
function inside� (that is not localised in space). The kind
of boundary condition that we are looking for writes as a
relation between the (Dirichlet) traceψ |	 and the normal
derivative (Neumann) trace �nψ |	 of the solution at the
boundary �T: F(ψ , �nψ |	) = 0. In general, this relation
is built in the form

∂nψ + i
+ψ = 0, on �T .

The operator i
+ is called the Dirichlet-to-Neumann
(DtN) operator.

2. ABCs for the one-dimensional wave equation

To introduce step by step the ideas related to ABCs for
molecular physics, let us start with the one-dimensional
wave equation

∂2
xψ − 1

c2
∂2
t ψ = −QδxQ, (2)
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in Rx×]0;T], where ψ = ψ(x, t) is the wave function,
x is the spatial coordinate and t is the time variable. We
consider a constant sound speed c for the homogeneous
isotropic medium Rx. The source is supposed to be a
point source with amplitude Q, located at point xQ. The
free-space solution (that is forQ= 0) of Equation (2) can
be written as the sum of a left and a right travelling waves
(ψ� and ψ r, respectively here), if we assume that the ini-
tial dataψ0 andψ1 are compactly supported in a domain
� � ] − x�; xr[ � ] − R; R[ (R > 0), with boundary � �
{x�; xr}. More precisely, if we have

⎧⎪⎨⎪⎩
∂2
xψ − 1

c2
∂2
t ψ = 0, (x, t ) ∈ �T := Rx×]0;T[,

ψ(x, 0) = ψ0(x), x ∈ Rx,

∂tψ(x, 0) = ψ1(x), x ∈ Rx,

(3)

under the assumption that supp(ψ0, 1)��, then the solu-
tionψ can be written asψ(x, t ) = ψ�(x + ct ) + ψ r(x −
ct ). Some calculations show that we have

ψ(x, t ) = 1
2
(ψ0(x + ct ) + ψ0(x − ct ))

+ 1
2

∫ x+ct

x−ct
ψ1(u)du, (4)

that is

⎧⎪⎪⎨⎪⎪⎩
2ψ�(x) = ψ0(x) +

∫ x

−∞
ψ1(u)du,

2ψ r(x) = ψ0(x) −
∫ x

−∞
ψ1(u)du.

(5)

Let us remark that, for |x| sufficiently large, that is for all x
such that |x| > L, the supports of the two wave functions
ψ�, r are disjoints. This implies e.g. that for x = −L, we
have ψ(x, t) = ψ�(x + ct), and so �xψ = c−1�tψ . In a
symmetrical way, we have for the right travelling wave: x
= L, and ψ(x, t) = ψ r(x − ct), and so �xψ = −c−1�tψ .
By introducing the outwardly directed unit normal vector
n = ±1 to ] − L; L[, we have the unification of the two
boundary conditions

∂nψ + 1
c
∂tψ = 0, (6)

at �T. This means that, if one wants to solve numerically
the initial value problem, which is a difficult task since
it is set in an unbounded domain Rx, we may rather
consider to solve the following initial boundary value

problem (IBVP): find the approximate fieldψa such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂2
xψ

a − 1
c2

∂2
t ψ

a = 0, (x, t ) ∈ �T ,

ψa(x, 0) = ψa
0 (x), x ∈ �,

∂tψ
a(x, 0) = ψa

1 (x), x ∈ �,

∂nψ
a + 1

c
∂tψ

a = 0, (x, t ) ∈ �T ,

(7)

which is set in the bounded spatial domain �T. The
main point here is that numerically computing ψa in �

requires a finite number of grid points unlike working in
Rx. Furthermore, in the special case of a one-dimensional
problem with constant wave speed, we can prove that we
have ψa = ψ|�T , which means that the restriction of the
solutionψ of the initial system exactly coincides with the
solution ψa to the bounded domain problem. Therefore,
the two waves travel through the boundary 	 with-
out being reflected back into the domain, as physically
expected. For this reason, the boundary condition given
by Equation (6) is said to be a transparent boundary
condition (TBC). If one considers the wave operator,
an interesting remark is that we get the following exact
factorisation of the wave operator:

∂2
x − 1

c2
∂2
t =

(
∂x + 1

c
∂t

)(
∂x − 1

c
∂t

)
. (8)

An alternative way for designing the TBCs above is
based on the Laplace transform

L (ψ)(x, ω) = ψ̂ (x, ω) =
∫ ∞

0
ψ(x, t )e−ωtdt,

with the co-variableω = σ + iτ , σ > 0 (let us remark that
an approach using the Fourier transform is also possible;
see Section 6). Under these notations, one gets the follow-
ing properties:

L (∂tψ)(x, ω) = ωψ̂(x, ω) − ψ(x, 0),

L (∂2
t ψ)(x, ω) = ω2ψ̂ (x, ω) − ωψ(x, 0) − ∂tψ(x, 0).

The initial full space problem can then be rewritten
as a transmission IBVP between the bounded Neumann
problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1
c2

∂2
t − ∂2

x

)
ψ int = 0, x ∈ �, t > 0,

∂xψ
int = ∂xψ

ext, x ∈ �, t > 0,
ψ int(x, 0) = ψ0(x), x ∈ �,

∂tψ
int(x, 0) = ψ1(x), x ∈ �,

(9)
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and the exterior Dirichlet problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1
c2

∂2
t − ∂2

x

)
ψext = 0, x ∈ Rx/�, t > 0,

ψext(x, t ) = ψext(x, t ), x = ±L, t > 0,
ψext(x, 0) = 0, x ∈ Rx/�,

∂tψ
ext(x, 0) = 0, x ∈ Rx/�.

(10)

Let us Laplace transform the first equation of system (10).
Then, for x > xr, one obtains the following ODE:

ω2

c2
ψ̂ext − ∂2

x ψ̂
ext = 0. (11)

A simple computation shows that the solution writes
down as the superposition of two waves travelling in
opposite directions

ψ̂ext(x, ω) = A+(ω)e
ω
c x + A−(ω)e−

ω
c x.

Since the exterior solution must have a finite energy
(square-integrable function), this leads to the condition
A+ = 0 and to the solution (with xr = L)

ψ̂ext(x, ω) = e−
ω
c (x−xr )xr(ψext(xr, ·))(ω).

Then, by differentiating, by continuity and using the
second equation in (9)

∂xψ̂
int(x, ω)|x=xr = −ω

c
ψ̂ int(x, ω)|x=xr ,

and finally by applying the inverse Laplace transform,
one obtains

∂xψ
int(x, t )|x=L = −1

c
∂tψ

int(x, t )|x=xr ,

leading to the TBC for ψ int at �T

∂nψ
int + 1

c
∂tψ

int = 0, on �T . (12)

Therefore, the solution ψ int exactly corresponds to ψa

in system (7). This also translates the property that the
factorisation (8) indeed splits the original wave operator
into an outgoing and an incoming absorbing operators
according to the choice of the sign± in front of the c−1�t
operator.

3. ABCs for one-dimensional Schrödinger
equations

3.1. The free-space case

Let us now come to the case of the Schrödinger equation.
We first consider the simple case of the one-dimensional
Schrödinger equation in the free-space since it is a con-
stant coefficient partial differential equation. The tech-
niques applied to the wave operator to derive bound-
ary conditions can still be used, but the resulting bound-
ary conditions have some very specific differences that
require more developments, in particular from the com-
putational point of view.

Let us first introduce the formulation of the problem
as coupled transmission problems

⎧⎨⎩
(i∂t + ∂2

x )ψ
int = 0, x ∈ �, t > 0,

∂xψ
int = ∂xψ

ext, x ∈ �, t > 0,
ψ int(x, 0) = ψ0(x), x ∈ �,

(13)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i∂t + ∂2

x )ψ
ext = 0, x ∈ ��,r, t > 0,

ψext = ψ int, x ∈ �, t > 0,
lim

|x|→∞
ψext(x, t ) = 0, t > 0,

ψext(x, 0) = 0, x ∈ ��,r.

(14)

Now, we Laplace transform the first equation of system
(14) (for example, in the right semi-infinite subdomain
�r � ]xr; +�[, setting �� � ] − �; x�[). Then, one gets
the ODE: iωψ̂ext + ∂2

x ψ̂
ext = 0, whose solution is explic-

itly given by

ψ̂ext(x, ω) = A+(ω)e
+√−iω x + A−(ω)e−

+√−iω x,

where the principal determination of the square-root is
such that �( +√·) > 0. Since we need to find a finite mass
solution, one requires that ψext � L2(�r), leading to A+

= 0. We can write that

ψ̂ext(x, ω) = e−
+√−iω (x−xr )L(ψ̂ext(xr, ·))(ω),

and by differentiating and continuity

∂xψ̂
int(x, ω)|x=xr = − +√−iωψ̂ int(x, ω)|x=xr

= −e−iπ/4ω
ψ̂ int(x, ω)|x=xr√

ω
.
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Now, the direct application of the inverse Laplace
transform leads to

∂xψ
int(x, t )|x=xr = −e−iπ/4∂t

(
1√
π

∫ t

0

ψ int(x, s)|x=xr√
t − s

ds
)

= −e−iπ/4∂
1/2
t ψ int(xr, t ),

where ∂
1/2
t designates the Caputo fractional derivative [8]

of order 1/2. Symmetrically, the same derivation occurs
at the left boundary. A unified writing of the transparent
boundary condition is then

(∂n + e−iπ/4∂
1/2
t )ψ int = 0, on �T . (15)

Compared to the TBC (12) for the wave equation, there
is a fundamental difference when considering (15) for the
Schrödinger equation. Indeed, the BC involves a nonlo-
cal time operator whichmust be discretised carefully (see
Section 3.3). In practice, we are led to solving the follow-
ing IBVP set in a finite spatial domain

⎧⎨⎩
i∂tψ int + ∂2

xψ
int = 0 , (x, t ) ∈ �T ,

∂nψ
int + e−iπ/4∂

1/2
t ψ int = 0, (x, t ) ∈ �T ,

ψ int(x, 0) = ψ0(x), x ∈ �.

(16)

In addition, if ψ0 � H1(�) (finite energy Sobolev space),
then it can be proved [9] that there exists a unique
smooth solution ψ in a well-adapted mathematical set-
ting. Moreover, ψ satisfies the following mass inequal-
ity: ‖ψ(t )‖L2(�) ≤ ‖ψ0‖L2(�), 	t > 0. This property can
be physically interpreted as the usual mass conservation
property for the full space equation: ‖ψ(t )‖L2 = ‖ψ0‖L2 ,
	t > 0. Indeed, for the bounded domain problem (16),
some mass of the solution goes out of the computational
domain, which is exactly what is expected from the TBC.
Let us also remark that, similarly to the wave operator,
one gets the factorisation: i∂t + ∂2

x = (∂x + √−i∂t )(∂x −√−i∂t ). It can be shown that the TBC in (16) writes
(∂n + √−i∂t )ψ int = 0, for (x, t) � �T.

3.2. Adding a potential or/and a nonlinearity

Let us now consider the case where a potential is included
into the equation. Then, if the potential V(x) = V (x) is
general in ��, r in system (1) but is time independent
(in ��, r, V can be general in the computational domain
�, even nonsmooth), we are led to solving a variable
coefficients ODE corresponding to ∂2

x ψ̂
ext + (V (x) +

iω)ψ̂ext = 0, after applying a Laplace transform. Most of
the time, getting the TBC is out of reach [10]. If V also
depends on t, this would lead to handle the Laplace trans-
form of V(x, t)ψext which is a convolution.

In some special cases, the TBC can still be computed.
For example, for a linear potential V(x) = x, the expres-
sion of the exact operator can be made explicit [10]
through the Airy functions in the Laplace domain. How-
ever, the concrete use of such boundary conditions is non-
trivial. If one considers a potentialV�V(t), then a change
of gauge φ(x, t ) = ψext(x, t )e−iV(t ) leads (after coming
back to the interior solution ψ int) to the TBC

∂nψ
int + e−iπ/4eiV(t )∂

1/2
t (e−iV(t )ψ int) = 0, on �T ,

(17)

with V(t ) := ItV , where It is the integral of V from 0 to t.
Considering the general situation is much more com-

plicate and TBCs can generally not be built. Instead, one
can produce families of approximate ABCs of increasing
order that minimise the reflection at the boundary. Vari-
ous directions exist [10,11], but some, based on the gener-
alisation of the point of view of the Laplace transform by
pseudo-differential operators theory and symbolical calcu-
lus [12,13], are systematic and can be also used for many
systems of partial differential equations (PDE) (in par-
ticular, for the Klein–Gordon and Dirac equations). For
example, onemay derive the following fourth-order ABC
(see [10]):

∂nψ
int + e−iπ/4eiV∂

1/2
t

(
e−iVψ int) + i sg(∂nV )

√|∂nV |
2

eiV It(√|∂nV |
2

e−iVψ int
)

= 0, (18)

on �T, where sg is the sign function and V(x, t ) := ItV .
We directly see that, when V is x-independent, this ABC
simplifies to (17) and is then exact as a TBC. Other kinds
of ABCs can be found in the literature [10,11] for variable
potentials.

Constructing TBCs for a nonlinear equation is gen-
erally impossible (see [14] for a special case). To get a
nonlinear ABC for system (1) in 1D, the main idea is
to use the formal substitution V = f(ψ)(x, t) and V =
It ( f (ψ))(x, t ) in theBC (18) [15–18]. Another approach,
called unified approach and prospected in [19,20], also
uses a splitting operator idea but rather to build ABCs for
nonlinear Schrödinger equations. Volkov-based ABCs
following similar ideas, and specifically designed for
laser–molecule interaction, were also proposed in [21].

3.3. How to discretise the initial boundary-value
problem

When we want to discretise one of the above IBVPs, we
must carefully approximate the boundary conditions to
get a stable scheme [1,9]. Indeed, if one considers for
example (18) which includes all the difficulties, then we
remark that the boundary condition involves
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� some time convolution integrals (fractional deriva-
tives/integration operators),

� some variable coefficients and nonlinear terms,
� and the normal derivative.

When discretising the boundary-value problem, even
with a simple Dirichlet (ψ int = 0) or Neumann (�nψ

int

= 0) boundary condition on�T, building a semi-discrete
time scheme is far from being trivial. Indeed, in such
a case, we often require that some physical properties
remain fulfilled at the semi-discrete level: mass/energy
conservation, time reversibility, gauge invariance, preser-
vation of the dispersion relation. We refer to [22] for
a complete description of the most standard and well-
adapted schemes (Crank–Nicolson, time-splitting, relax-
ation schemes, etc.). When considering an ABC, then
one must take care to preserve these properties. This
is not a trivial task even for the simplest case, i.e. the
one-dimensional free-space linear Schrödinger equation
[1,9]. To illustrate this difficulty, let us mention that when
using a Crank–Nicolson scheme [1,9,22] for a uniform
time step �t > 0, the half-order time-derivative operator
must be discretised, thanks to the following quadrature
rule:

∂
1/2
t f (tn) ≈

√
2

�t

n∑
k=0

βn−k f k, (19)

with βk = (−1)kαk, 	k � 0, (α0, α1, α2, . . .) =
(1, 1, 1

2 ,
1
2 ,

3
8 ,

3
8 , . . .), to provide an unconditionally

stable scheme. The variable coefficients and nonlinear
terms, as well as the normal derivative, are usually discre-
tised consistently with the interior time and space scheme
(e.g. finite difference, finite element). Let us remark that
well-known Fast Fourier Transform (FFT) based pseudo-
spectral approximation schemes in space [22,23] which
strongly assume that the boundary conditions are peri-
odic (or that we have a Dirichlet or Neumann boundary
condition when using sine- or cosine-transform) cannot
be used with an ABC. Nevertheless, we will see in Section
5 that a suitable truncation of the computational domain
can be achieved using a PML approach.

The fractional nonlocal operator ∂
1/2
t (and latter I1/2t ,

see e.g. system (21) for higher dimensional problems)
can be evaluated by the suitable discrete formula given
by Equation (19), but fast convolution algorithms or
localised representations based on rational approxima-
tions can also be used. Concerning the fast evaluation of
fractional operators, in [24,25], the authors propose an
efficient evaluation algorithm by splitting the full time
integral operator into a local and an history parts, leading

to a special treatment for each of the two terms. The local
part, that includes the kernel singularity, is computed
through an adapted quadrature formula. The history part
involves an approximation through a Gaussian sum of
exponentials [26,27], and then a recursive evaluation.We
remark here that the development of fast evaluations of
integral operators has been investigated intensively since
about 30 years now with e.g. the celebrated fast multi-
pole method by Greengard and Rokhlin [28] for long-
range interactions arising in particle simulations. Con-
cerning integral operators that arise in TBCs/ABCs, the
first algorithms were studied in the case of the wave-like
equation (see e.g. [29,30]) and then for Schrödinger equa-
tions [24,25,31]. Various extensions have been recently
proposed to design related new fast algorithms for time-
fractional PDEs systems (see e.g. [32]). Let us remark here
that Gaussian sum techniques are now widely used in
the design of fast evaluations of nonlocal interactions (an
example is given in [33]). Instead of fast algorithms for
fractional operators, rational approximations of the sym-
bol of the operators can also be used. About the contri-
butions for the Schrödinger equation, let us mention the
initial work by DiMenza [34], and then e.g. [10,35,36] for
various situations (1D/2D, potential/nonlinearity). The
main idea consists in introducing rational approxima-
tions (e.g. Padé rational functions) to have a local repre-
sentation of the action of the fractional operator through
the solution to some local auxiliary equations set on the
fictitious boundary. These equations being local (mean-
ing defined by differential operators with positive inte-
ger orders), their solution can be computed efficiently
through well-adapted formulations and the use of suit-
able solvers.

To illustrate the accuracy of the boundary condition
(18) for the truncated IBVP (1), we consider the non-
linear potential V(x, t ) = 0.1x2 − |ψ |2, and the initial
data is taken as ψ0(x) = 2sech(

√
2x)ei

15
2 x. We first com-

pute the reference solution ψ ref with a relaxation time
scheme [16,22,37] on a very large domain, so that we do
not see the effect of the boundary and plot the ampli-
tude |ψ ref(x, t)| in the domain �T � ] − 10; 10[ ×
[0; 2] (see Figure 2(a)), for �t = 10−3. Then, we dis-
cretise [10] the truncated IBVP with the same semi-
discrete time scheme (relaxation), setting successively as
a function of time, the discrete version of the ABC (18)
at three different locations: xr = 10 (Figure 2(b)), xr
= 8 (Figure 2(c)) and xr = 6 (Figure 2(d)). The spa-
tial discretisation scheme is based on a linear finite-
element method [10] with N = 4 × 103 points. As
we can see, the ABC (18) yields an accurate simula-
tion of the outgoing wave to the computational domain
at xr.
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Figure . ABCs for the D Schrödinger equation (with a quadratic potential minus a nonlinear cubic term): V(x, t ) = 0.1x2 − |ψ |2, for t
� [; ]. The location of the ABC changes from xr =  to xr =  and finally xr =  without almost affecting the solution (at least at some
visible levels of accuracy since the boundary condition is not transparent). (a) Numerical reference solution. (b) Numerical approximate
solution (xr = ). (c) Numerical approximate solution (xr = ). (d) Numerical approximate solution (xr = ).

4. ABCs for two-dimensional Schrödinger
equations

4.1. The free-space case: straight boundary

The extension of ABCs to higher dimensions requires
mainly the suitable integration of the effect of the bound-
ary �. In the case of a straight boundary for the two-
dimensional case, the exact DtN operator
+ can be built
[1] in the form

∂nψ + i
+(∂y, ∂t )ψ = 0, on �T := � × [0;T],
(20)

where n is the outwardly directed unit normal vector
to the left half-space� := {x := (x, y) ∈ R

2/x < 0}. The
expression of 
+ is based on the inverse time Laplace
transform, the partial Fourier transform in y and an
extension of the factorisation formula (see e.g. [1]). The
operator 
+ is nonlocal both in time and space and can
be tricky to implement in a standard code (e.g. based
on finite-difference or finite-element approximations). To
simplify the situation, local approximations are usually

used. For example, the following first- and second-order
ABCs can be derived:

ABC1 (∂n + e−iπ/4∂
1/2
t )ψ = 0, on �T ,

ABC2 (∂n + e−iπ/4∂
1/2
t − eiπ/4 1

2
��I1/2t )ψ = 0, on �T ,

(21)

where �� := ∂2
y is the second-order derivative operator

(called Laplace–Beltrami operator) over�. These bound-
ary conditions are local in space, which is expected for
deriving efficient algorithms (indeed, the associated dis-
crete matrices are then highly sparse) but nevertheless
remain nonlocal in time (yielding then to consider all the
past history of the solution).

From the implementation point of view, the approach
is relatively close to the one-dimensional case. The oper-
ator�� could be approximated through finite-difference
or finite-element methods, depending on the spatial
approximation scheme in �.
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4.2. The free-space case: curved boundary

Since the boundary conditionsABC1, 2 defined by expres-
sions (21) are derived in the half-space case, they can be
directly applied to a rectangular domain. However, some
errors may arise during the numerical simulations due
to the corner reflection. Usually, additional well-adapted
corner conditions must be enforced to accurately rep-
resent the wave function ψ , leading to difficult devel-
opments in mathematical and numerical analysis [38].
For practical computations, ABCs are rather preferred for
smooth boundaries (e.g. a square with rounded corners,
or a circle). Therefore, the ABC must take into account
the fact that the fictitious boundary is curved, incorporat-
ing in particular the effects of the curvature κ(s) (as well
as its variations�sκ , s being the curvilinear abscissa along
�) and the curvilinear variations of the solution onto the
surface �, i.e. through some terms �sψ , ∂2

s ψ ,.... We do
not give any detail here since the derivation of families
of local ABCs is extremely technical and we refer to [39]
for more details. For example, the following fourth-order
ABC can be obtained:

∂nψ + e−iπ/4∂
1/2
t ψ + κ

2
ψ − eiπ/4

(
κ2

8
+ 1

2
��

)
I1/2t ψ

+i
(

κ3

8
+ 1

2
∂s(κ∂s) + ��κ

8

)
Itψ = 0, on�T , (22)

where �� := ∂2
s . Let us remark that (22) simplifies to

(21) when κ = 0, i.e. for a flat interface (and then s =
y). Furthermore, when � is a circle, many terms vanish.
The implementation of such boundary conditions can be
achieved again by using suitable discrete quadratures for
the time operators [40] and some finite-element or finite-
difference schemes in space.

4.3. Adding a potential or/and a nonlinearity

Finally, like in the one-dimensional situation, variable
potentials and nonlinear terms could be incorporated
into the ABC. The derivation needs a lot of techni-
cal developments [35,36]. Here, to illustrate the pur-
pose, we write a fourth-order ABC that must be seen
as the extension of (18) and (22) to the 2D potential
case

∂nψ + e−iπ/4eiV∂
1/2
t

(
e−iVψ

) + κ

2
ψ

− eiπ/4eiV
(

��

2
+ κ2

8
+ i∂sV∂s + 1

2
(i∂2

s V − (∂sV )2)

)
I1/2t (e−iVψ)

+ ieiV
(

∂s(κ∂s)

2
+ κ3

8
+ ��κ

8
+ i∂sκ∂sV

2

)
It (e−iVψ)

−i sg(∂nV )
√

|∂nV |eiV It (
√

|∂nV |e−iVψ) = 0, on �T , (23)

with V = f (ψ)(x, t ) and V = It ( f (ψ))(x, t ). The dis-
cretisation can be achieved through all the previous
developments. The reader is referred to [35,36] for more
details and numerical examples showing that these ABCs
perform very well.

Even if ABCs can be produced for complicate equa-
tions, they are nevertheless not always so easy to imple-
ment. In addition, for Schrödinger-type equations, one
of the drawbacks is that they are usually nonlocal in
time. Localisation can be done but at the price of some
advanced algorithmic developments. In the following
section, we introduce the PML approach which is eas-
ier to implement and appears as a simple computational
alternative to ABCs.

5. PMLs for Schrödinger equations

The idea of PML (sometimes also called sponge lay-
ers) has been originally introduced for electromagnetism
by a French engineer J.-P. Bérenger in 1994 [41]. Since
then, many developments have been directed towards
the understanding and improvement of PMLs for many
PDE systems arising in Physics and Engineering [3]. This
methodology has some closed connections to what is
commonly called ‘absorbers’ in the atomic physics liter-
ature and which refers to empirically designed absorb-
ing layers [42]. Notice, however, that PML are rigorously
designed and provide better absorption as analysed in
[16]. In addition, they do not need to be adapted to
the potential and nonlinearity, unlike complex absorbing
potential (AP) approaches [43,44] (see also Section 7.3
for a comparison between the PMLs and AP approaches
for the Dirac equation). For the Schrödinger equation,
the developments are more recent (see e.g. [16,45] for
some contributions). Basically, PMLs are designed for
linear wave problems [3] (see also Section 6.3 for the
closely related Klein–Gordon equation). Their applica-
tion to nonlinear PDEs is direct but remains formal, with-
out any theoretical background as for the ABCs. Never-
theless, as seen below, they perform very well for such
situations and are easy to implement which makes them
attractive. In particular, and unlike ABCs, they can also
be easily incorporated into an existing solver based on
pseudo-spectral FFT-based methods [46], opening the
road to efficient time-splitting schemes.

To give a simplified but sufficiently general presen-
tation, we consider system (1) for the 2D nonlinear
case with a cubic nonlinearity and a general potential
V. Let us assume that we are interested in the compu-
tation of an approximate solution inside the rectangu-
lar domain DPhy =] − Lx; Lx[×] − Ly; Ly[. The idea of
PMLs is to surround the physical domain DPhy by an
absorbing unphysical layer: DPML := (] − L∗

x; L∗
x[×] −
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Figure . Surrounding the finite computational physical domain
of interest DPhy by an absorbing layer DPML to damp the waves
entering the layer region. The resulting complete computational
domain is thenD := DPhy ∪ DPML.

L∗
y; L∗

y[) \ DPhy, with L∗
ν = Lν + δν (ν = x, y) (repre-

sented by the green region in Figure 3).
The objective is to artificially damp the waves enter-

ing into the layer DPML. To this end, one introduces the
following functions:

Sν (ν) =
{

1, |ν| < Lν,

1 + eiϑν σν (|ν| − L∗
ν ), Lν ≤ ν < L∗

ν,
ν = x, y,

(24)

where ϑν is a constant and σ ν is the so-called absorb-
ing function. Various choices of functions ϑν and σ ν

are reported in the literature (see e.g. [45,47]). Among
these, the following choices are popular and work well
for nonlinear Schrödinger equations: ϑν = π

4 and σν =
σ ν
0 (ν + δν )

2, where δν = L∗
ν − Lν is the thickness in the

ν-direction of the PML layer and σ ν
0 is a real-valued pos-

itive constant representing the absorbing strength. Since
the wave is damped into the layer, we generally are free
to choose the boundary condition on the outer bound-
ary.Usually, homogeneousDirichlet orNeumannbound-
ary conditions are set. Nevertheless, since our goal in the
presentation is here to use a pseudo-spectral FFT-based
approximation scheme, we impose periodic boundary
conditions. With such choices, the 2D cubic nonlin-
ear Schrödinger equation with a potential V is trun-
cated in the computational domainD :=] − Lx; Lx[×] −
Ly; Ly[= DPhy ∪ DPML and approximated by

i∂tψ = −1
2

[
∂x

Sx(x)

(
∂x

Sx(x)

)
+ ∂y

Sy(y)

(
∂y

Sy(y)

)]
ψ

+
[
V + β|ψ |2

]
ψ, x ∈ D, (25)

+periodic BC for x ∈ ∂D, t ≥ 0. (26)

Since system (25)–(26) is a nonlinear Schrödinger
equation with variable coefficients and periodic bound-
ary conditions, it can be solved efficiently by using FFTs
incorporated into a time-splitting scheme [46]. To this
end, we first apply the time-splitting approach to deal
with the nonlinearity, i.e. for x ∈ D, one solves

i ∂tψ(x, t ) = −1
2

[
∂x

Sx(x)

(
∂x

Sx(x)

)
+ ∂y

Sy(y)

(
∂y

Sy(y)

)]
ψ(x, t ),

tn ≤ t ≤ tn+1, (27)

for a time step �t > 0, followed by solving

i ∂tψ(x, t ) = [
V (x, t ) + β |ψ(x, t )|2] ψ(x, t ),

tn ≤ t ≤ tn+1, (28)

for�t. If t� [tn, tn + 1], Equation (28) leaves |ψ | invariant
in t, i.e. |ψ(x, t )| = |ψ(x, tn)| := |ψn(x)|. Higher order
splitting can naturally be implemented. Therefore, (28)
reduces to a linearOrdinaryDifferential Equation (ODE),
which can be integrated analytically as

ψ(x, t ) = e−i[V(x,tn,t )+β |ψn(x)|2(t−tn)]ψ(x, tn), x ∈ D,

tn ≤ t ≤ tn+1, (29)

with V(x, t1, t2) = ∫ t2
t1 V (x, τ )dτ . To solve Equation (27)

with periodic boundary conditions by a Fourier pseudo-
spectral method, we adapt the approach developed e.g.
in [48,49] which combines FFT-based evaluations of the
operator appearing in the right-hand side of Equation
(27) after the semi-discretisation in time by a Crank–
Nicolson scheme and the solution to implicit linear sys-
tems through a preconditioned Krylov subspace solver
[50]. This approach is simple to implement since it basi-
cally uses algorithmic bricks that are well managed (even
from the parallel implementation view point). The result-
ing scheme is second-order in time and spectrally accu-
rate in space and appears therefore to be very efficient,
robust and well-adapted to simulate problems set in infi-
nite domains.We refer to [46] formore details and variant
around this method.

To illustrate the method, we apply the resulting
scheme to study the dynamics of a manufactured
2D soliton. To this end, we choose the potential and
initial data respectively as V (x, t ) = − 1

2 sech
2(x −

t )sech2(y − t )(cosh(2(x − t )) + cosh(2(y − t ))),



1870 X. ANTOINE ET AL.

Figure . PML for the D Schrödinger equation: contour plots of |ψ(x, t )|2 at times t= , , , , , . The problem consists in the dynamics
of a manufactured D soliton.

ψ0(x) = sech(x)sech(y)ei(x+y) and let β = −1.
With these parameters, we can solve exactly the
problem and get the analytical outgoing solution
ψ(x, t ) = sech(x − t )sech(y − t )ei(x+y). The other
parameters are chosen as follows: Lν = 8, δν = 1 and σμ

= 80 (ν = x, y). The time step and mesh size are fixed as
�t = 10−2 and hν = 1/8, respectively (tuning the PML
parameters can sometimes be tricky). Figure 4 shows the
contour plots of |ψ |2 at different times. We can see that
when the soliton wave enters into the PML region, it is
then very well damped and no visible waves are reflected
back into the physical domain. This shows that PMLs
can be extremely useful when one wants to truncate an
infinite domain, even when the problem is nonlinear. Let
us remark that it is easy to extend the method to higher
dimensions, and that circular PMLs are also available
(see e.g. [46] for the Schrödinger equation).

6. ABCs/PMLs for the Klein–Gordon equation

6.1. ABCs for the field-particle Klein–Gordon
equation

The time-domain Klein–Gordon equation (TDKGE) is a
wave equation for which absorbing boundary layers have
been extensively studied. We assume that the initial data

ψ0 and ψ1 are compactly supported in a domain � �
] − x�; xr[ � ] − R; R[ (R > 0), with boundary � � {x�;
xr}. A strategy similar to the one used for the Schrödinger
equation is then applied to a spinless relativistic particle
of charge e andmassm and subject to an external constant
electric field, written here in Coulomb gauge and denoted
by (V, A) (scalar and vector potential). In this case, the
TDKGE reads

⎧⎨⎩
PKGψ = 0, (x, t ) ∈ �T := Rx×]0;T[,
ψ(x, 0) = ψ0(x), x ∈ Rx
∂tψ(x, 0) = ψ1(x), x ∈ Rx,

(30)

where the operator PKG is given by

PKG = ∂2
x − 1/c2∂2

t − ieV/c2∂t − ieA∂x

+ e2/c2V 2 − e2A2 − m2c2.

Without giving the mathematical details, one gets the fol-
lowing TBC by factorising PKG:

(
∂n − 1

c

√
∂2
t + ieV∂t − e2V 2 + 3

4
c2e2A2 + m2c4

− iceA
2

)
ψ = 0, on �T . (31)
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Now, when the external field is not constant and m

 0, it is no more possible to explicitly construct the
exact transparent operator. However, the computation of
approximate boundary conditions is possible. This step
requires the introduction ofmathematical tools which are
beyond the scope of this paper. In addition, the intro-
duction of a high-frequency regime assumption or the use
of Padé’s approximants is often required. For the inter-
ested reader, we refer to [51] where it can be shown that
a sequence of ABCs of increasing order can be built. For
not constant Ax and V, the resulting ABCs of orders k =
1, 2, 3 are given on �T by

ABC1

(
∂n + 1

c
∂t

)
ψ = 0,

ABC2

(
∂n + 1

c
∂t + ieV

2c
− ieAx

2

)
ψ = 0,

ABC3

(
∂n + 1

c
∂t + ieV

2c
− ieAx

2

− 1
2c

(
− ie∂tV − ic2e∂xAx + e2V 2 − c2e2A2

x

−m2c4 − 1
4
(e2V 2 − c2e2A2

x) − i
2
(e∂xV − ce∂xAx)

+ i
2
(e∂tV − ce∂tAx)

)
It
)

ψ = 0. (32)

6.2. ABCs for the two-dimensional Klein–Gordon
equation

We consider the two-dimensional TDKGE (� = 1)
including the electromagnetic field, that is A(x, y, t) and
V(x, y, t) which, respectively, represent the vectorial and
scalar potentials satisfying the Maxwell’s equations. The
equation writes

[
(
i∂t − eV (x, y, t )

)2 − c2
( − i∇ − eA(x, y, t )

)2
−m2c4]ψ = 0.

To simplify the presentation, we consider that the com-
putational domain � is a disk of radius R. We rewrite the
TDKGE in polar coordinates in�r, for r� [0, ε) with ε >

0 small enough, that is (the details are skipped)

(
c2∂2

r − ∂2
t + c2

χ2
r
∂2
θ − μV∂t + O1 + O2 + O3

)
ψ = 0.

(33)

We set above Ax = Arcos (θ) − Aθ sin (θ), Ay =
Arsin (θ) + Aθcos (θ) and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O1 := −
(
c2

χr
+ c2μAr

)
∂r, O2 := − c2μ

χr
Aθ ∂θ ,

O3 := −μ∂tV − c2μ∂rAr − c2μ
χr

Ar − c2μ
χr

∂θAθ

+e2V 2 − c2e2‖A‖2 − m2c4.

Again skipping all the technical details, ABCs for
the field-particle TDKGE can be obtained on �R

T :=
C(0,R) × [0;T], with C(0, R) the circle of radius R and
centre 0, as

ABC1

(
∂r + 1

c
∂t

)
ψ = 0,

ABC2

(
∂r + 1

c
(
∂t + ie

2
V + 1

2c
O1

))
ψ = 0,

ABC3

(
∂r + 1

c

[
∂t + ie

2
V + 1

2c
O1

+
(

− c2

2χ2
r
∂2
θ − 1

2
O2∂θ + iO4

)
It
])

ψ = 0,

whereO4 is a complicated algebraic scalar operator, which
is defined in in [51, p. 282]. Notice that the first-order
ABC (ABC1) is exactly (6) in the r-direction.

We now consider the discretisation of the 1D TDKGE
with ABCs. A second-order explicit scheme is proposed
to approximate the equation defined by the correspond-
ing operator PKG in the truncated spatial domain �, that
is for interior nodes

ψn+1
j − 2ψn

j + ψn−1
j = �t2

[ c2

�x2
(
ψn

j+1 − 2ψn
j + ψn

j−1
)

+ An
j

2�t
(
ψn+1

j − ψn−1
j

)
+ Bn

j

2�x
(
ψn

j+1 − ψn
j−1

) +Cn
j ψ

n
j

]
,

where⎧⎨⎩
An

j = −ieV (x j, tn), Bn
j = −ieAx(x j, tn),

Cn
j = −ie∂tV (x j, tn) − ic2∂xAx(x j, tn) + e2V 2(x j, tn)
−c2e2A2

x(x j, tn) − m2c4.

The initial data is a wave packet given by

ψ0(x) = ck0
mc2 + √

m2c4 + c2k20
e−

x2
4 +ik0x,
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Figure . ABCs for the D TDKGE: |ψ | (log-scale) for ABC (top), ABC (middle) and ABC (bottom).

with k0 = 10. The external field is such thatA(t)= cos (t),
V(t) = 0.1sin (t) and � = m = c = 1. The computational
domain is� � ]− 10; 10[, T= 8 and�x= �t= 0.4. The
results for ABC1, ABC2 andABC3 (see Equation (32)) are
presented in Figure 5 in the (x, t)-plane (log-scale). The
discretisation of the time integral is based on similar ideas
[51] as (19).We clearly see that increasing the order of the
ABC reduces the artificial reflection at the boundary.

6.3. PMLs for the Klein–Gordon equation

We start this section by introducing the notion of PML
for the linear wave equation. The beginning of this sec-
tion is extracted from [52]. As for the Schrödinger equa-
tion, a thin layer surrounds the physical domain DPhy
designed as an absorbing and reflectionless material. The
construction of PMLs is based on an analytic contin-
uation of the wave function in the complex plane, i.e.
the wave function can be evaluated for complex values
of x in the absorbing layer. More precisely, we set x →
x + if(x) for some differentiable real-valued function f
such that f′(x) = σ x(x)/ω, where σ x(x) > 0 and a given

frequency ω, in the PML region and zero otherwise.
Then, the derivative with respect to x becomes�x → 1/(1
+ iσ x/ω)�x. The prefactor allows for an absorption of the
wave function of frequency ω in the PML region. In the
simplest 1D case, it then reads

∂tψ = c∂xφ − σxψ, ∂tφ = c∂xψ − σxφ,

where φ is an intermediate function.
In higher dimensions, PMLs for wave equations are

established, first thanks to the Laplace transform in time
and Fourier transform in the direction of propagation.
Then, a modal solution/ansatz decreasing exponentially
in the direction of propagation is postulated. A new set
of equations adapted to the chosen ansatz is then derived
in the external layer, in Laplace and Fourier variables.
Finally, going back to real time and space, we get the full
set of equations to solve in the PML [53]. Notice that aux-
iliary functions may be necessary to localise in time the
PML. This concept applied in 2D [52] to the wave equa-
tion reads as follows:∂2

t ψ − c2(∂2
x + ∂2

y )ψ = 0. For some
function σ x and transformation x→ 1/(1 + iσ x/ω)�x, the
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Figure . PMLs for the D TDKGE: comparison between the PML and the reference solutions (left) and logarithm of the absolute error
between the reference and PML solutions (right).

PML version is

∂tψ − c∇φ − σxψ + ψ = 0,

with �tφx = c�xψ − σ xφx, �tφy = c�yψ and �tψ =
cσ x�yφy.

Now, for more general wave-like equations, including
the Klein–Gordon equation, of the form

∂tψ − ∇2ψ +
∑
k≥0

cku2k+1 + dk∂tψ2k+1 = 0,

with ck � 0 , dk � 0, a set of PMLs was established in [53].
This paper is a theoretical friendly as well as numerical
presentation of PMLs for nonlinear wave equations.

Wenow test the PMLapproach for the equation ∂2
t ψ −

∂2
xψ + mc2ψ = 0, with mc2 = 1. In this case, we imple-
ment the PML in [53]⎧⎪⎪⎨⎪⎪⎩

∂2
t ψ − ∂2

xψ + mc2ψ = −σ (x)∂tψ + σ (x)η(2)

+ ασ (x) − mc2ψ + ∂x
(
σ (x)η(1)),

∂tη
(1) + (

σ (x) + α
)
η(1) + ∂xψ = 0,

∂tη
(2) + αη(2) + (mc2 + α2)ψ = 0,

where σ is chosen as in [53], i.e. σ (x) = 0 in the inte-
rior zone ]0; Lx[ and σ (x) = σx(1 − δ−1

x (x − L∗
x )

2)8 in
the layer ]Lx; L∗

x[, where L∗
x = Lx + δx. In this test, PMLs

are implemented in ]Lx; L∗
x[ and homogeneous Dirich-

let boundary conditions are set on the left boundary x�

� 0 and at x = L∗
x . We approximate this system by using

an elementary finite-difference scheme. We take α = 1,
Lx = 10, δx = Lx/10 and σ x = 50. The initial data is
taken as ψ0(x) = e−(x−Lx/2)2 and the final time is T = 6.
For comparison, we compute the reference solution ψ ref

on a large domain. The space and time steps are chosen,
respectively, as �x = 4 × 10−2 and �t = 2 × 10−2. We
first compare in real space in Figure 6 (left) the reference

and the PML solutions. Notice that the PML region is
]Lx; L∗

x[=]10; 11[. In this Figure, a line at x = Lx shows
the location of the interface between the PML and the
internal region. We also represent in Figure 6 (right) (in
log-scale and as a function of time) the logarithm of the
error between the reference and the PML solutions, i.e.
(x, t, log |ψ ref(x, t) − ψ(x, t)|). This clearly illustrates the
absorption at the right side (for the PML) of the domain,
yielding a correct numerical solution, and the artificial
reflection at the left side (for the homogeneous Dirich-
let boundary condition), resulting in a wrong numerical
solution.

7. ABCs/PMLs for the Dirac equation

In this section, we propose an overview of ABCs and
PMLs for the Dirac equation. In 2D, the Dirac equation
which models the interaction of a quantum particle with
an external field (A, V) reads PDψ = 0, with

PD := I4∂t + αx
(
c∂x − ieAx

) + αy
(
c∂y − ieAy

)
+ i(Vc + eV )I4 − iβmc2,

where [54,55]

� Vc : R
2
x,y → R is an interaction (Coulomb) poten-

tial.
� V : R

2
x,y × R+ → R is a combination of the self-

consistent and external electric potentials.
� A : R

2
x,y × R+ → R

2 is a combination of the elec-
tromagnetic potential generated by the particle
charge and by an external potential.

� m is the mass of the particle, e their charge, c the
speed of light.

� ψ : R+ × R
2
x,y → C

4 is the Dirac wave function.
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� the Hermitian Dirac matrices αx, αy, β are defined
by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αx =
(
02 σx
σx 02

)
, σx =

(
0 1
1 0

)
,

αy =
(
02 σy
σy 02

)
, σy =

(
0 −i
i 0

)
,

β =
(

β2 02
02 −β2

)
, β2 =

(
1 0
0 −1

)
,

and 02 and I2 are, respectively, the zero and iden-
titymatrices inM2(C). The following relations hold:
α2
x = α2

y = β2 = I4 and {αx, αy} = {αx, β} = {αy,
β} = 04.

� J = (Jx, Jy), with Jx = ec
(
ψ, αxψ

)
C4 , Jy =

ec
(
ψ, αyψ

)
C4 , denotes the current density and

ρ stands for the particle density which is equal to
e
∑4

i=1 |ψi|2.

In the following, we assume that (A, V) is given at any
time t. The system under consideration then reads in 2D

{
PDψ = 0, (x, y, t ) ∈ �T = R

2
x,y×]0;T [,

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ R
2
x,y.

(34)

7.1. ABCs for the one-dimensional Dirac equation

In the one-dimensional case, the Dirac equation is com-
monly called in mathematics a first-order hyperbolic sys-
tem. Such equations are well known in fluid dynam-
ics, mechanical engineering, as well as electromagnetism.
This property is a consequence of the fact that the matri-
ces αx, y, z (and β) are diagonalisable in R. There exists an
extended literature (see for instance [56]) on the deriva-
tion and approximation of boundary conditions mod-
elling outgoing waves. Basically, the derivation of ABCs
for the Dirac equation follows some very similar ideas.
However, since the matrix β is not diagonalisable in the
same basis as αx, y, z, even in 1D, it is only possible to
derive ABCs and not TBCs. The strategy to construct
ABCs for the Dirac equation is in fact mathematically
equivalent to the one developed for the Klein–Gordon
or Schrödinger equations. This is again nontrivial and
it requires some material going beyond the scope of the
present paper. We refer to [51] for the interested and
mathematically inclined reader.

Let us recall that, in 1D, theDirac equation can bewrit-
ten as a 2 × 2 system

⎧⎪⎨⎪⎩
σx∂xψ − imcβ2ψ − 1

c
∂tψ = 0, (x, t ) ∈ �T

:= Rx×]0;T[,
ψ(x, 0) = ψ0(x), x ∈ Rx.

(35)

To explain the principle to buildABCs for theDirac equa-
tion, we first consider themassless particle casem= 0 and
no external field. Then, the Dirac equation reads �tψ +
αx�xψ = 0, with ψ = (ψ1, ψ2), i.e.{

∂tψ2 + c∂xψ1 = 0,
∂tψ1 + c∂xψ2 = 0.

If we introduce the two fields φ1 = (ψ1 + ψ2)/
√
2 and

φ2 = (ψ1 − ψ2)/
√
2, we get a systemof uncoupled trans-

port/wave equations (first-order wave equations){
∂tφ1 + c∂xφ1 = 0,
∂tφ2 − c∂xφ2 = 0. (36)

Equivalently, setting αx = �xDx�
−1
x , then system (36)

reads �tφ + Dx�xφ = 0, where φ = (φ1, φ2) and

�x = 1√
2

(
1 −1
1 1

)
, Dx =

(
1 0
0 −1

)
.

At x = xr (resp. x�), we have the following TBC:⎧⎨⎩
∂tφ

int + cDx∂xφ
int = 0, x ∈ �, t > 0,

φint
2 = φext

2 , x = xr, t > 0,
φint(x, 0) = φ0(x), x ∈ �,

where φ0 = �−1
x ψ0. The exact solution is then recon-

structed by settingψ int =�xφ
int. Now, ifm
 0, andmore

generally when the particle is subject to an external elec-
tric field, the derivation requires more efforts. However,
from the above remark when m 
 0, a first simple ABC
reads at x = xr⎧⎨⎩

∂tφ
int + cDx∂xφ

int − imc2�xβ2φ
int = 0, x ∈ �, t > 0,

φint
2 = φext

2 , x = xr, t > 0,
φint(x, 0) = φ0(x), x ∈ �.

or equivalently⎧⎨⎩
∂tψ

int + cαx∂xψ
int − imc2β2ψ

int = 0, x ∈ �, t > 0,(
�−1

x ψ int)
2 = (

�−1
x ψext)

2, x = xr, t > 0,
ψ int(x, 0) = ψ0(x), x ∈ �.

To improve the absorption at the boundary, a finer
approach is necessary, where this time�x will be replaced
by a complex operator �. A short overview is presented
in the two-dimensional case in the next subsection.

7.2. ABCs for the two-dimensional Dirac equation

The derivation of ABCs for the Dirac equation in 2D
is mathematically non-trivial, so that we will just focus
here on the general ideas. Their construction is based
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on a diagonalisation [51] of the Dirac operator up to a
negative-order operator (following a diagonalisation the-
orem for pseudo-differential hyperbolic systems [57] that
generalises the idea of factorisation). The action of the
remaining operator on the solution at the boundary will
be expected negligible at least for high frequencies. To
simplify the presentation, we assume that the domain is
a disk of radius R, �R = C(0, R), and we define �R

T :=
�R × [0;T]. The Dirac equation is then formally rewrit-
ten in polar coordinates (r, θ)

(
I4∂r + L(r, θ, t, ∂θ , ∂t )

)
ψ = 0, (37)

where L = L1 + L0 is the operator defined through

L1 :=
1
c
α̃x∂t + 1

χr
α̃xα̃y∂θ , L0 :=

1
c
α̃xβ̃, χr :=

1
R + r

,

with the matrices

α̃x =

⎛⎜⎜⎝
0 0 0 e−iθ

0 0 eiθ 0
0 e−iθ 0 0
eiθ 0 0 0

⎞⎟⎟⎠ , α̃y =

⎛⎜⎜⎝
0 0 0 −ie−iθ

0 0 ieiθ 0
0 −ie−iθ 0 0
ieiθ 0 0 0

⎞⎟⎟⎠ .

Finally, we set β̃ = iβmc2 + i(eV +Vc)I4 − ie(Arα̃x +
Aθ α̃y). We suppose thatAθ ,Ar,V andVc are independent
of (t, θ). We denote by F(t,θ ) the Fourier transform in (t,
θ) with co-variables (τ , ξ ). Then, Fourier transforming
(37) leads to(

I4∂r + F(t,θ )(L)(r, θ, t, ξ , τ )
)
Ft,θ (ψ) = 0. (38)

Again, if α̃x,y and β̃ were diagonalisable in the same basis,
it would be easier to impose TBCs. However, we can show
that there exists a transitionmatrixF(t,θ )(�) toF(t,θ )(L),
such that one gets an almost exact operator diagonalisa-
tion: (�r + 
)φ ∼ 0, where

F(t,θ )(
) =
(F(t,θ )(


−) 0
0 σ (
+)

)
∈ M4(C),


+ (resp.
−) representing the outgoing (resp. incoming)
wave operator at the boundary. The ABCs, which simply
consists of vanishing the incoming waves (inside�R), are
given in the following theorem.

Theorem 7.1: The zeroth- and first-order ABCs are

� zeroth-order:
(
�−1

0 ψ
)
1,2 = 0 on, �R

T ,
� first-order:

(
�−1

1 ψ
)
1,2 = 0 on, �R

T ,

where �−1
0 and �−1

1 are operators defined as

�−1
0 = 1

2

⎛⎜⎜⎝
−eiθ 0 0 v+
0 −e−iθ v− 0
eiθ 0 0 v−
0 eiθ v+ 0

⎞⎟⎟⎠, (39)

with v± = (
1 ± ic

χr
∂θ∂

−1
t

)
, and�−1

1 = 1
2

(
A1 B1
C1 D1

)
, with

A1 = −
(
b−1

+ eiθ 0
0 a−1

− e−iθ

)
, B1 =

(
0 b1−
a1+ 0

)
,

C1 =
(
b−1

− eiθ 0
0 a−1

+ e−iθ

)
, D1 =

(
0 b1+
a1− 0

)
,

setting a1± = 1 ± (i(Vc + eV ) ± ieAr)It , a−1
± =

1 ± (i(Vc + eV ) ∓ ieAr)It , b1± = (1 ± (imc2 ± eAθ )It
)

and b−1
± = (1 ± (imc2 ∓ eAθ )It

)
.

7.3. Numerical discretisation and example of ABC
for the Dirac equation

We propose a simple numerical illustration of the derived
ABCs for the 1D Dirac equation. The quantity which is
represented here is again (t, x, log |ψ1(x, t)|) which shows
the reflections at the domain boundary. We first rewrite
PD in the form

PD = i∂t − iA∂x + Bmc2,

where

A =
(
c 0
0 −c

)
, B = i

(
0 mc2

−mc2 0

)
.

As explained in Section 7.1, a simple and natural condi-
tion to impose at x� and xr is (�t ± c�x)ψ1, 2 = 0. This
boundary condition is called a transport-like boundary
condition, and corresponds in fact to the zeroth-order
ABC in Theorem 7.1. The initial conditions are

ψ1(x, 0) = e−
x2
δ2

+ik0x,

ψ2(x, 0) = ck0
mc2 + √

m2c4 + c2k20
ψ1(x, 0),

where c = 1, k0 = 20, δ = 0.5 and m = 1. The spatial
computational domain is ]x�; xr[, with xr = −x� = 5. The
final time is T = 7 and �t = �x = 1/40 (we have 400
segments in space). The one-dimensional ABCs can be
deduced from Theorem 7.1. We consider the following
discretisation scheme: denoting by (φn

j , ψ
n
j ) an approxi-

mation of the exact two-spinors (ψ1(xj, tn), ψ2(xj, tn)) at
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Figure . ABCs for the D potential-free Dirac equation: amplitude |ψ | (log-scale) for the zeroth-order transport-like (top) and improved
first-order transport-like conditions (bottom) obtained in Theorem ..

(xj, tn), for interior points, we have

⎧⎪⎪⎨⎪⎪⎩
φn+1
j = φn

j + c
�t
�x

(φn
j+1 − φn

j ) + �tmc2ψn
j ,

ψn+1
j = ψn

j − c
�t
�x

(ψn
j − ψn

j−1) − �tmc2φn
j .

At order 0, the transport condition reads at the discrete
levelφn

0 − ψn
0 = 0 at the left boundary, andφn

N + ψn
N = 0

at the right one. Let us remark that for the very partic-
ular interior scheme which is considered here, Dirichlet
boundary conditions are equivalent to this order 0 con-
dition (transport-like). At the next order, a time-integral
is added to the boundary condition. Stability is trivially
satisfied under a CFL (Courant–Friedrichs–Lewy) condi-
tion [7]. Figure 7 shows the propagation of |ψ1| by impos-
ing the zeroth-order (top) and improved first-order (bot-
tom) ABCs, from Theorem 7.1 in its 1D version.

7.4. PMLs for the Dirac equation

In this section, we briefly describe the application of
PMLs to the Dirac equation following [58] where a
detailed presentation is available. As previously men-
tioned, the PML approach consists in constructing
an absorbing layer surrounding the physical domain,
say in 3D, DPhy :=] − Lx; Lx[×] − Ly; Ly[×] − Lz; Lz[.
Denoting by �(v) a continuous, positive and non-
decreasing function (usually a quadratic function like
σ ν
0 v2), which is null for negative v, the following

nonlinear 3D coordinates stretching is proposed in
[58]: η → η + iω−1(μ−

η (η) + μ+
η (η)), with μ±

η (v ) =∫ v

±Lη
�(−Lη ± u)du, for η = x, y or z. By definition, the

change of variable is only active in the thin layerDPhy sur-
rounding the physical domain and is equivalent to the use
of absorbing functions in the PML approach (the inter-
pretation through coordinates stretching has been intro-
duced in computational electromagnetism in [59], and is
discussed in Section 6.3). Let us define ση(v) = �( − Lη

− v) +�(v− Lη), η = x, y or z. This leads to the modified
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Figure . PML for the DDirac equation: comparison between the PML andAP approaches: the PML approach ismuchmore accurate than
the complex AP approach. In addition, increasing the size of the layer improves the accuracy of the solution. Contour plots of |ψ(x, t )| at
times t= , , , ,  (for σ  =  and δx = δy = ) (by courtesy of Professor Olivier Pinaud).

PML Dirac operator

P(PML)
D = −ic

(
αx∂

(PML)
x + αy∂

(PML)
y + αz∂

(PML)
z

)
+mc2β +V (x)14,

where

∂(PML)
x ψ = ∂xψ + i

2π
σx(x)

∫
R

eit

ω − iσx(x)
∂xψ̂ (x, ω)dω.

In [58], an accurate finite-difference discretisation of
these PMLs is proposed coupled with a time-splitting
approach [60,61]. Homogeneous Dirichlet boundary
conditions are set on the outer boundary. Let us remark
that an interesting research direction would be to adapt
the spectral approaches with splitting scheme introduced
in Section 5 and [46] for the Schrödinger equation, to the
Dirac equation, again imposing periodic boundary con-
ditions on the exterior boundary of the computational
domainD.
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To conclude this section, we propose the comparison
between the PMLs and complex AP approaches in 2D.
The parameters for the Dirac equation are again � = c =
m= 1. The approximation scheme given in [58] is a leap-
frog scheme [61] which partially avoids fermion doubling
and uses splitting as in [60]. The domain is ] − 5; 5[2,
T = 10,�x = �y = 4 × 10−2 and �t = �x/2. The initial
data is a Gaussian: ψ0(x) := e−

|x−x0 |
a2 , with a = 0.6. The

function �(v) is null for v � 0 and equal to σ 0v2 oth-
erwise. The absorption parameter σ 0 takes some values
between 10−1 and 101. In the first plot of Figure 8, the
abscissa represents the absorption coefficient σ = σ 0 and
the ordinate corresponds to the L2(DPhy)-error between
the exact and approximate solutions. We consider three
different sizes of the layer: δx(= δy) = 2 (diamond), δx =
1.5 (circle) and δx = 1 (circle). We clearly observe that
the PML approach is extremely accurate while being sim-
ple to implement and yields more accurate results than
the complex AP method. In addition, we also report in
Figure 8, the evolution of |ψ | over the time with PMLs,
where the chosen parameters are σ 0 = 1 and the layer
size is δx = 2. Again, we observe that the behaviour of the
field is well reproduced.

8. Conclusion and perspectives

Wepresented a simplified and friendly overview of recent
developments on ABCs and PMLs for PDEs arising in
atomic, molecular and laser physics. The equations of
interest are the Schrödinger, Klein–Gordon and Dirac
equations. In addition to the main theoretical develop-
ments to understand these methods, we also provide
some simulations to illustrate why they are useful and
more accurate than standard empirical truncation tech-
niques designed by physical arguments, e.g. the complex
AP method. Even if many developments have now been
achieved, some mathematical and numerical questions
still need to be investigated. Finally, the probably most
important step concerns now the use of thesemethods for
simulations of high-dimensional realistic situations that
arise in atomic andmolecular physics.We expect that this
paper can provide a guideline to achieve such a goal.
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