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We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral 
spatial discretization scheme for computing the ground states (GS) of rotating Bose–
Einstein condensates (BEC), modeled by the Gross–Pitaevskii Equation (GPE). We first start 
by reviewing the classical gradient flow (also known as imaginary time (IMT)) method 
which considers the problem from the PDE standpoint, leading to numerically solve a 
dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank–
Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and 
recognize classical power iterations, allowing us to derive convergence rates. By considering 
the alternative point of view of minimization problems, we propose the preconditioned 
steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of 
the GPE. We investigate the choice of the preconditioner, which plays a key role in the 
acceleration of the convergence process. The performance of the new algorithms is tested 
in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, 
most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bose–Einstein Condensates (BECs) were first predicted theoretically by S.N. Bose and A. Einstein, before being realized 
experimentally in 1995 [4,20,28,31]. This state of matter has the interesting feature that macroscopic quantum physics prop-
erties can emerge and be observed in laboratory experiments. The literature on BECs has grown extremely fast over the last 
20 years in atomic, molecular, optics and condensed matter physics, and applications from this new physics are starting to 
appear in quantum computation for instance [22]. Among the most important directions, a particular attention has been 
paid towards the understanding of the nucleation of vortices [1,21,37–39,41,48] and the properties of dipolar gases [13,14]
or multi-components BECs [11–13]. At temperatures T which are much smaller than the critical temperature Tc , the macro-
scopic behavior of a BEC can be well described by a condensate wave function ψ which is solution to a Gross–Pitaevskii 
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Equation (GPE). Being able to compute efficiently the numerical solution of such a class of equations is therefore extremely 
useful. Among the most crucial questions are the calculations of stationary states, i.e. ground/excited states, and of the 
real-time dynamics [5,9,13,34,35].

To fully analyze a representative and nontrivial example that can be extended to other more general cases, we consider 
in this paper a BEC that can be modeled by the rotating (dimensionless) GPE. In this setting, the computation of a ground 
state of a d-dimensional BEC takes the form of a constrained minimization problem:

Find φ ∈ L2(Rd) s.t. φ ∈ arg min
‖φ‖=1

E(φ), (1.1)

here ‖φ‖ =
∫
Rd

|φ|2 is the standard L2-norm and E is the associated energy functional. Several approaches can be developed 

for computing the stationary state solution to the rotating GPE. For example, some techniques are based on appropriate 
discretizations of the continuous normalized gradient flow/imaginary-time formulation [3,7,9,13,15,19,25,26,49], leading to 
various iterative algorithms. These approaches are general and can be applied to many situations (dipolar interactions, 
multi-components GPEs...). We refer for instance to the recent freely distributed Matlab solver GPELab that provides the 
stationary states computation [6] (and real-time dynamics [8]) for a wide variety of GPEs based on the so-called BESP 
(Backward Euler pseudo-Spectral) scheme [7,9,13,15] (see also Sections 4 and 6). Other methods are related to the numerical 
solution of the nonlinear eigenvalue problem [32,46] or on optimization techniques under constraints [17,23,29,30]. As we 
will see below in Section 4, some connections exist between these approaches. Finally, a regularized Newton-type method 
was proposed recently in [47].

Optimization problems with orthogonal or normalization constraints also occur in different branches of computational 
science. An elementary but fundamental example is the case of a quadratic energy, where solving the minimization problem 
is equivalent to finding an eigenvector associated with the lowest eigenvalue of the symmetric matrix representing the 
quadratic form. A natural generalization is a class of orthogonalized minimization problems, which for a quadratic energy 
reduce to finding the N first eigenvectors of a matrix. Many problems in electronic structure theory are of this form, 
including the celebrated Kohn–Sham and Hartree–Fock models [24,44]. Correspondingly, a large amount of effort has been 
devoted to finding efficient discretization and minimization schemes. A workhorse of these approaches is the nonlinear 
preconditioned conjugate gradient method, developed in the 80s [40], as well as several variants of this (the Davidson 
algorithm, or the LOBPCG method [36]).

Although similar, there are significant differences between the mathematical structure of the problem in electronic struc-
ture theory and the Gross–Pitaevskii equation. In some respects, solving the GPE is easier: there is only one wavefunction 
(or only a few for multi-species gases), and the nonlinearity is often local (at least when dipolar effects are not taken 
into account), with a simpler mathematical form than many electronic structure models. On the other hand, the Gross–
Pitaevskii equation describes the formation of vortices: the discretization schemes must represent these very accurately, and 
the energy landscape presents shallower minima, leading to a more difficult optimization problem.

In the present paper, we consider the constrained nonlinear conjugate gradient method for solving the rotating GPE 
(Section 2) with a pseudo-Spectral discretization scheme (see Section 3). This approach provides an efficient and robust 
way to solve the minimization problem. Before introducing the algorithm, we review in Section 4 the discretization of 
the gradient flow/imaginary-time equation by standard schemes (explicit/implicit Euler and Crank–Nicolson schemes). This 
enables us to make some interesting and meaningful connections between these approaches and some techniques related 
to eigenvalue problems, such as the power method. In Sections 5.1 and 5.2, we introduce the projected preconditioned 
steepest descent (PSD) and preconditioned conjugate gradient (PCG) methods for solving the minimization problem on the 
Riemannian manifold defined by the spherical constraints. In particular, we provide some formulae to compute the stepsize 
arising in such iterative methods to get the energy decay assumption fulfilled. The stopping criteria and convergence analysis 
are discussed in Sections 5.3 and 5.4. We then investigate the design of preconditioners (Section 5.5). In particular, we 
propose a new simple symmetrical combined preconditioner, denoted by PC. In Section 6, we consider the numerical study 
of the minimization algorithms for the 1D, 2D and 3D GPEs (without and with rotation). We first propose in Section 6.1
a thorough analysis in the one-dimensional case. This shows that the PCG approach with combined preconditioner PC and 
pseudo-Spectral discretization, called PCGC method, outperforms all the other approaches, most particularly for very large 
nonlinearities. In Sections 6.2 and 6.3, we confirm these properties in 2D and 3D, respectively, and show how the PCGC
algorithm behaves with respect to increasing the rotation speed. Finally, Section 7 provides a conclusion.

2. Definitions and notations

For the considered minimization problem (1.1), the energy functional E is defined by

E(φ) =
∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + η

2
|φ|4 − ωφ∗Lzφ

]
,

where V is an external potential, η is the nonlinearity strength, ω is the rotation speed, and Lz = i(y∂x − x∂y) is the angular 
momentum operator.
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A direct computation of the gradient of the energy leads to

∇E(φ) = 2Hφφ, with Hφ = −1

2
� + V + η|φ|2 − ωLz

the mean-field Hamiltonian. We can compute the second-order derivative as

1

2
∇2 E(φ)[ f , f ] = 〈

f , Hφ f
〉 + η Re

〈
φ2, f 2

〉
.

We introduce S = {φ ∈ L2(Rd), ‖φ‖ = 1} as the spherical manifold associated to the normalization constraint. Its tangent 
space at a point φ ∈ S is TφS = {h ∈ L2(Rd), Re 〈φ,h〉 = 0}, and the orthogonal projection Mφ onto this space is given by 
Mφh = h − Re 〈φ,h〉φ.

The Euler–Lagrange equation (first-order necessary condition) associated with our problem states that, at a minimum 
φ ∈ S , the projection of the gradient on the tangent space is zero, which is equivalent to

Hφφ = λφ,

where λ = 〈
Hφφ,φ

〉
is the Lagrange multiplier associated to the spherical constraint, and is also known as the chemical 

potential. Therefore, the minimization problem can be seen as a nonlinear eigenvalue problem. The second-order necessary 
condition states that, for all h ∈ TφS ,

1

2
∇2 E(φ)[h,h] − λ‖h‖2 ≥ 0.

For a linear problem (η = 0) and for problems where the nonlinearity has a special structure (for instance, the Hartree–Fock 
model), this implies that λ is the lowest eigenvalue of Hφ (a property known as the Aufbau principle in electronic structure 
theory). This property is not satisfied here.

3. Discretization

To find a numerical solution of the minimization problem, the function φ ∈ L2(Rd) must be discretized. The presence 
of vortices in the solution imposes strong constraints on the discretization, which must be accurate enough to resolve 
fine details. Several discretization schemes have been used to compute the solution to the GPE, including high-order fi-
nite difference schemes or finite element schemes with adaptive meshing strategies [29,30]. Here, we consider a standard 
pseudo-spectral discretization based on Fast Fourier Transforms (FFTs) [7,9,15,49].

We truncate the wave function φ to a square domain [−L, L]d , with periodic boundary conditions, and discretize φ
with the same even number of grid points M in any dimension. These two conditions can of course be relaxed to a 
different domain size L and number of points M in each dimension, at the price of more complex notations. We de-
scribe our scheme in 2D, its extension to other dimensions being straightforward. We introduce a uniformly sampled grid: 
DM := {xk1,k2 = (xk1 , yk2 )}(k1,k2)∈OM , with OM := {0, . . . , M − 1}2, xk1+1 − xk1 = yk2+1 − yk2 = h, with mesh size h = 2L/M , 
M an even number. We define the discrete Fourier frequencies (ξp, μq), with ξp = pπ/L, −M/2 ≤ p ≤ M/2 − 1, and 
μq = qπ/L, −M/2 ≤ q ≤ M/2 − 1. The pseudo-spectral approximations φ̃ of the function φ in the x- and y-directions 
are such that

φ̃(t, x, y) = 1

M

M/2−1∑
p=−M/2

̂̃φp(t, y)eiξp(x+L), φ̃(t, x, y) = 1

M

M/2−1∑
q=−M/2

̂̃φq(t, x)eiμq(y+L),

where ̂̃φp and ̂̃φq are respectively the Fourier coefficients in the x- and y-directions

̂̃φp(t, y) =
M−1∑
k1=0

φ̃k1(t, y)e−iξp(xk1 +L)
, ̂̃φq(t, x) =

M−1∑
k2=0

φ̃k2(t, x)e−iμq(yk2 +L)
.

The following notations are used: φ̃k1 (t, y) = φ̃(t, xk1 , y) and φ̃k2 (t, x) = φ̃(t, x, yk2 ). In order to evaluate the operators, we 
introduce the matrices

Ik1,k2 := δk1,k2 , [[V ]]k1,k2 := V (xk1,k2), [[|φ|2]]k1,k2 = |φk1,k2 |2,
for (k1, k2) ∈ OM , and δk1,k2 being the Dirac delta symbol which is equal to 1 if and only if k1 = k2 and 0 otherwise. We 
also need the operators [[∂2

x ]], [[∂2
y]], y[[∂x]] and x[[∂y]] which are applied to the approximation φ̃ of φ, for (k1, k2) ∈OM ,
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∂2
x φ(xk1,k2) ≈ ([[∂2

x ]]φ̃)k1,k2 := − 1

M

M/2−1∑
p=−M/2

ξ2
p (̂φ̃k2)peiξp(xk1 +L)

,

∂2
yφ(xk1,k2) ≈ ([[∂2

y ]]φ̃)k1,k2 := − 1

M

M/2−1∑
q=−M/2

μ2
q (̂φ̃k1)qeiμq(yk2 +L)

,

(x∂yφ)(xk1,k2) ≈ (x[[∂y]]φ̃)k1,k2 := 1

M

M/2−1∑
q=−M/2

ixk1μq (̂φ̃k1)qeiμq(yk2 +L)
,

(y∂xφ)(xk1,k2) ≈ (y[[∂x]]φ̃)k1,k2 := 1

M

M/2−1∑
p=−M/2

iyk2ξp (̂φ̃k2)peiξp(xk1 +L)
.

(3.1)

By considering the operators from CN (N = M2 (in 2D)) to C given by [[�]] := [[∂2
x ]] + [[∂2

y ]] and [[Lz]] := −i(x[[∂y]] −
y[[∂x]]), we obtain the discretization of the gradient of the energy

∇E(φ) = 2Hφφ, with Hφ = −1

2
[[�]] + [[V ]] + η[[|φ|2]] − ω[[Lz]].

We set φ := (φ̃(xk1,k2 ))(k1,k2)∈OM as the discrete unknown vector in CN . For conciseness, we identify an array φ in the vector 
space of 2D complex-valued arrays MM (C) (storage according to the 2D grid) and the reshaped vector in CN . Finally, the 
cost for evaluating the application of a 2D FFT is O(N log N).

In this discretization, the computations in Section 2 are still valid, with the following differences: φ is an element of CN , 
the operators �, V , |φ|2 and Lz are N × N Hermitian matrices, and the inner product is the standard CN inner product. 
In the following sections, we will assume a discretization like the above one, and drop the brackets in the operators for 
conciseness.

4. Review and analysis of classical methods for computing the ground states of GPEs

Once an appropriate discretization is chosen, it remains to compute the solution to the discrete minimization problem

φ ∈ arg min
φ∈CN ,‖φ‖=1

E(φ). (4.1)

Classical methods used to find solutions of (4.1) mainly use the so-called imaginary time equation, which is formally 
obtained by considering imaginary times in the time-dependent Schrödinger equation. Mathematically, this corresponds to 
the gradient flow associated with the energy E on the manifold S:

∂tφ = −1

2
Mφ∇E(φ) = −(Hφφ − λ(φ)φ). (4.2)

As is well-known, the oscillatory behavior of the eigenmodes of the Schrödinger equation become dampening in imaginary 
time, thus decreasing the energy. The presence of the Lagrange multiplier λ, coming from the projection on the tangent 
space on S , ensures the conservation of norm: ‖φ‖ = 1 for all times. This equation can be discretized in time and solved. 
However, since Hφ is an unbounded operator, explicit methods encounter Courant–Friedrichs–Lewy (CFL) like conditions 
[27] that limit the size of their time step, and many authors [7,6,13–15,49] use a backward-Euler discretization scheme.

We are interested in this section in obtaining the asymptotic convergence rates of various discretizations of this equation, 
to compare different approaches. To this end, consider here the model problem of finding the first eigenpair of a N × N
symmetric matrix H . We label its eigenvalues λ1 ≤ λ2 · · · ≤ λN , and assume that the first eigenvalue λ1 is simple, so that 
λ1 < λ2. This model problem is a linearized version of the full nonlinear problem. It is instructive for two reasons: first, any 
good algorithm for the nonlinear problem must also be a good algorithm for this simplified problem. Second, this model 
problem allows for a detailed analysis that leads to tractable convergence rates. These convergence rates allow a comparison 
between different schemes, and are relevant in the asymptotic regime of the nonlinear problem.

We consider the following discretizations of equation (4.2): Forward Euler (FE), Backward Euler (BE), and Crank–Nicolson 
(CN) schemes:

φ̃FE
n+1 − φn

�t
= −(Hφn − λ(φn)φn), (4.3)

φ̃BE
n+1 − φn

�t
= −(Hφ̃BE

n+1 − λ(φn)φn), (4.4)

φ̃CN
n+1 − φn

�t
= −1

2
(Hφ̃CN

n+1 − λ(φn)φ̃
CN
n+1) − 1

2
(Hφn − λ(φn)φn). (4.5)
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Fig. 1. Update rule with the projected gradient, with the λ term (red) and with the unprojected gradient, without the λ term (blue). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

These discretizations all decrease the energy when �t > 0 is small enough, but do not preserve the norm: the departure 
from normalization is of order O(�t2). Therefore, they are followed by a projection step

φn+1 = φ̃n+1∥∥∥φ̃n+1

∥∥∥ .

Note that some authors do not include the λ term, choosing instead to work with

φ̃FE
n+1 − φn

�t
= −Hφn, (4.6)

φ̃BE
n+1 − φn

�t
= −Hφ̃BE

n+1, (4.7)

φ̃CN
n+1 − φn

�t
= −1

2
(Hφ̃CN

n+1 + Hφn). (4.8)

These also yield schemes that decrease the energy. However, because of the use of the unprojected gradient Hφ instead of 
Mφ(Hφ) = Hφ − λφ, the departure from normalization is O(�t), instead of O(�t2) for the projected case. The difference 
between the two approaches is illustrated in Fig. 1.

For the FE and BE methods, a simple algebraic manipulation shows that one step of the method with the λ term is 
equivalent to one step of the method without the λ term, but with an effective �t modified as

�
λ,FE
t = �t

1 + �tλ
, (4.9)

�
λ,BE
t = �t

1 − �tλ
. (4.10)

This is not true for the CN method, nor it is true when nonlinear terms are included. However, even in this case, the 
difference between including and not including the λ term is O(�t2), and their behavior is similar. Since the analysis of 
unprojected gradient methods is simpler, we focus on this here.

Then, these schemes can all be written in the form

φn+1 = Aφn

‖Aφn‖ , (4.11)

where the matrix A is given by

AFE = I − �t H,

ABE = (I + �t H)−1,

ACN = (I + �t

2
H)−1(I − �t

2
H).

The eigenvalues μi of A are related to the eigenvalues λi of H by the following spectral transformation

μFE
i = 1 − �tλi,

μBE
i = 1

1 + �tλi
,

μCI
i = 1 − �t

2 λi

1 + �t
2 λi

.
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We call this eigenvalue the amplification factor: if φn has eigencomponents cn,i = 〈vi, φn〉 on the eigenvector vi of H and 
φ0 is normalized to 1, then the iteration (4.11) can be solved as

cn,i = μn
i√∑N

i=1 |μn
i c0,i|2

c0,i .

This iteration converges towards the eigenvector associated to the largest eigenvalue μN (in modulus) of A, if it is simple, 
with convergence rate μN−1/μN . This is nothing but the classical power method for the computation of eigenvalues, with 
a spectral transformation from H to A. Therefore we identify the FE method as a shifted power method, the BE method as 
a shift-and-invert approach, and the CN uses a generalized Cayley transform [10,43].

From this we can readily see the properties of different schemes. We make the assumption that either λ1 is positive or 
that �t < 1

−λ1
(for BE) and �t < 2

−λ1
(for CN). If this condition is not verified, then the iteration will generally not converge 

towards an eigenvector associated with λ1 because another eigenvalue than λ1 will have a larger amplification factor. Under 
this assumption, we see that the BE and CN converge unconditionally, while FE only converges if

�t <
2

λN
.

This is a CFL-like condition: when H is the discretization of an elliptic operator, λN will tend to infinity as the size of the 
basis increases, which will force FE to take smaller time steps.

The asymptotic convergence rate of these methods is μN−1
μN

. While the FE method has a bounded convergence rate, 
imposed by λ1, λ2 and λN , the BE and CN methods can be made to have an arbitrarily small convergence rate, by simply 
choosing �t arbitrarily close to − 1

λ1
(BE) or − 2

λ1
(CN). Since in practice λ1 is unknown, it has to be approximated, for 

instance by λ(φn). This yields the classical Rayleigh Quotient Iteration:

φn+1 = (H − 〈φn, Hφn〉)−1φn∥∥(H − 〈φn, Hφn〉)−1φn
∥∥ ,

which is known to converge cubically. This iteration can also be seen as a Newton-like method.
From the previous considerations, it would seem that the BE and CN are infinitely superior to the FE method: even with 

a fixed stepsize, the BE and CN methods are immune to CFL-like conditions, and with an appropriately chosen stepsize, it 
can be turned into a superlinearly-convergent scheme. The first difficulty with this approach is that it is a linear strategy, 
only guaranteed to converge when close to the ground state. As is always the case with Newton-like methods, it requires a 
globalization strategy to be efficient and robust in the nonlinear setting. The second issue, is that the BE and CN methods 
require the solution of the linear system (H − λ(φn))φ̃n+1 = φn .

The difficulty of solving the system depends on the discretization scheme used. For localized basis schemes like the 
finite element method, H is sparse, and efficient direct methods for large scale sparse matrices can be used [42]. For the 
Fourier pseudo-spectral scheme, which we use in this paper, H is not sparse, and only matrix–vector products are available 
efficiently through FFTs (a matrix-free problem). This means that the system has to be solved using an iterative method. Since 
it is a symmetric but indefinite problem, the solver of choice is MINRES [18], although the solver BICGSTAB has been used 
[7,9]. The number of iterations of this solver will then grow when the grid spacing tends to zero, which shows that BE also 
has a CFL-like limitation. However, as is well-known, Krylov methods [42] only depend on the square root of the condition 
number for their convergence, as opposed to the condition number itself for fixed-point type methods [15,49]. This explains 
why BE with a Krylov solver is preferred to FE in practice [7,9].

Furthermore, preconditioners can be used to reduce this number of iterations [7,9], e.g. with a simple preconditioner (one 
that is diagonal either in real or in Fourier space). This method is effective for many problems, but requires a globalization 
strategy, as well as an appropriate selection of parameters such as �t and the precision used to solve the linear system 
[7,9]. Here, we propose a method that has all the advantages of BE (robust, Krylov-like dependence on the square root of 
the condition number, ability to use a preconditioner), but is explicit, converges faster than BE, and has no free parameter 
(no fine-tuning is necessary).

5. The preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods

5.1. The steepest descent method

The previous approaches usually employed in the literature to compute the ground states of the Gross–Pitaevskii equa-
tion are all based on implicit discretizations of the imaginary-time equation (4.2). As such, these methods come from PDE 
theory and lack the insight of minimization algorithms. The difficulty of applying classical minimization algorithms comes 
from the spherical constraints. However, the general theory of optimization algorithms on Riemannian manifolds has been 
developed extensively in [2,33], where the authors derive constrained analogues of gradient, conjugate gradient and New-
ton’s algorithms. This is the approach we follow here, and employ a preconditioned conjugate gradient method on the 
manifold S .
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In this section, we work with an arbitrary symmetric positive definite preconditioner P . The choice of P will be discussed 
later in subsection 5.5. The (projected, preconditioned) steepest descent method for the minimization of E on S is the 
update

φ̃n+1 = φn − αn P
(

Hφnφn − λnφn
)
, φn+1 = φ̃n+1/

∥∥∥φ̃n+1

∥∥∥, (5.1)

where λn = λ(φn). We reformulate this equation as

φn+1 = cos(θn)φn + sin(θn)
pn

‖pn‖ , with pn = dn − Re 〈dn, φn〉φn, (5.2)

where dn = −Prn is the descent direction, equal to the negative of the preconditioned residual rn = Hφn φn − λ(φn)φn . The 
equations (5.1) and (5.2) are equivalent when θn or αn is small enough, with a one-to-one correspondence between θn
and αn . To first order, we have: αn = θn ‖pn‖.

Without preconditioner, this method, summarized in Algorithm 1, is identical to the FE method (4.6).

Algorithm 1: The steepest descent method.

while not converged do
λn = λ(φn)

rn = Hφn φn − λnφn

dn = −Prn

pn = dn − Re 〈dn, φn〉φn

θn = arg minθ E (cos(θ)φn + sin(θ)pn/‖pn‖)
φn+1 = cos(θn)φn + sin(θn)pn/‖pn‖
n = n + 1

end

To choose the parameter θn , a number of strategies are possible. We first show that, when θn is small enough, the 
steepest descent method decreases the energy.

Expanding φn+1 up to second-order in θn , we obtain

φn+1 =
(

1 − θ2
n

2

)
φn + θn

pn

‖pn‖ +O(θ3
n ), (5.3)

and therefore

E(φn+1) = E(φn) + θn

‖pn‖ Re 〈∇E(φn), pn〉 + 1

2

θ2
n

‖pn‖2

[
∇2 E(φn)[pn, pn] − λn ‖pn‖2

]
+O(θ3

n ). (5.4)

We now compute the first-order variation

Re 〈∇E(φn), pn〉 = Re 〈∇E(φn),dn − Re 〈dn, φn〉φn〉
‖dn − Re 〈dn, φn〉φn‖ = Re 〈rn,dn〉

‖dn − Re 〈dn, φn〉φn‖
= − 〈rn, Prn〉

‖dn − Re 〈dn, φn〉φn‖ .

Since P was assumed to be positive definite, this term is always negative so that the algorithm decreases the energy when 
θn is chosen small enough. Since pn is orthogonal to φn , the second-order term ∇2 E(φn)[pn, pn] −λn ‖pn‖2 is guaranteed to 
be positive when φn is close to a minimizer by the second-order optimality conditions.

Therefore, a basic strategy is to choose θn fixed and small enough so that the energy decreases. A better one is to choose 
θn adaptively. For instance, we could perform the linesearch

θn = arg min
θ

E

(
cos(θ)φn + sin(θ)

pn

‖pn‖
)

. (5.5)

Since E(θ) is not a quadratic function, this is a nonlinear one-dimensional minimization problem, generally requiring many 
evaluations of E(θ) to converge to a minimum. However, many of the computations for the evaluation of E(θ), including 
all that require FFTs, can be pre-computed. Since the FFT step is the dominant one in the computation of the energy, the 
evaluation of E(θ) at many points is not much more costly than the evaluation at a single point. Therefore it is feasible to 
use a standard one-dimensional minimization routine.

Alternatively, we can obtain a simple and cheap approximation by minimizing the second-order expansion of E in θn . 
We expect this to be accurate when θn is small, which is the case close to a minimizer. Minimizing (5.4) with respect to θn
yields

θ
opt
n = −Re 〈∇E(φn), pn〉 ‖pn‖

Re
[∇2 E(φn)[pn, pn] − λn

] . (5.6)
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As we have seen, the numerator is always positive, and the denominator is positive when φn is close enough to a minimizer. 
In our implementation, we compute the denominator, and, if it is positive, we use θopt

n as a trial stepsize. If not, we use 
some default positive value. If the energy of φn+1 using this trial stepsize is decreased, we accept the step. If the energy 
is not decreased, we reject the step, decrease the trial stepsize, and try again, until the energy is decreased (which is 
mathematically ensured when θn is small enough). Alternatively, we can use Armijo or Wolfe conditions as criterion to 
accept or reject the stepsize, or even use the full line search (5.5). The evaluation of the energy at multiple values of θ do 
not require more Fourier transforms than at only one point, but only more computations of the nonlinear term, so that a 
full line search is not much more costly than the heuristic outlined above. In our tests however, the heuristic above was 
sufficient to ensure fast convergence, and a full line search only marginally improved the number of iterations. Therefore, 
we simply use the heuristic in the numerical results of Section 6.

Let us note that under reasonable assumptions on the structure of critical points and on the stepsize choice, there are 
various results on the convergence of this iteration to a critical point (see [2] and references therein).

5.2. The conjugate gradient method

The conjugate gradient method is very similar, but uses an update rule of the form

dn = −Prn + βn pn−1 (5.7)

instead of simply dn = −Prn . This is justified when minimizing unconstrained quadratic functionals, where the formula

dn = −Prn + βndn−1, with βn = 〈rn, Prn〉
〈rn−1, Prn−1〉 , (5.8)

yields the well-known PCG method to solve linear systems. For nonlinear problems, different update formulas can be used, 
all equivalent in the linear case. Equation (5.8) is known as the Fletcher–Reeves update. Another popular formula is the 
Polak–Ribière choice β = max(βPR, 0), where

βPR = 〈rn − rn−1, Prn〉
〈rn−1, Prn−1〉 . (5.9)

We use β = max(βPR, 0), which is equivalent to restarting the CG method (simply using a steepest descent step) when 
βPR < 0 and is a standard choice in nonlinear CG methods. For the justification of the CG method for constrained minimiza-
tion, see [2,33].

Algorithm 2: The conjugate gradient method.

while not converged do
λn = λ(φn)

rn = Hφn φn − λnφn

βn = 〈rn − rn−1, Prn〉/〈rn−1, Prn−1〉
βn = max(βn, 0)

dn = −Prn + βpn−1

pn = dn − Re 〈dn, φn〉φn

θn = arg minθ E (cos(θ)φn + sin(θ)pn/‖pn‖)
φn+1 = cos(θn)φn + sin(θn)pn/‖pn‖
n = n + 1

end

The CG algorithm is presented in Algorithm 2. In contrast with the steepest descent algorithm, the quantity 
Re 〈∇E(φn), pn〉 does not have to be negative, and pn might not be a descent direction: even with a small stepsize, the 
energy does not have to decrease at each step. To obtain a robust minimization method, we enforce energy decrease to 
guarantee convergence. Therefore, our strategy is to first check if pn is a descent direction by computing Re 〈∇E(φn), pn〉. 
If pn is not a descent direction, we revert to a steepest descent step, which we know will decrease the energy, else, we 
choose θn as in (5.6), and use the same step size control as in the steepest descent algorithm.

In our numerical tests, we observe that these precautions of checking the descent direction and using a stepsize control 
mechanism are useful in the first stage of locating the neighborhood of a minimum. Once a minimum is approximately 
located, pn is always a descent direction and the stepsize choice (5.6) always decreases the energy.

5.3. Stopping criteria

A common way to terminate the iteration (in the BE schemes) is to use the stopping criterion

φn,∞
err := ‖φn+1 − φn‖∞ ≤ ε. (5.10)
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This can be problematic because the minima are generally not isolated but form a continuum due to symmetries (for 
instance, complex phase or rotational invariance), and this criterion might be too restrictive. A more robust one is based on 
the norm of the symmetry-covariant residual

rn,∞
err := ‖rn‖∞ = ‖Hφnφn − λnφn‖∞ ≤ ε, (5.11)

or the symmetry-invariant energy difference

En
err := |E(φn+1) − E(φn)| ≤ ε. (5.12)

This third one converges more rapidly than the two previous ones: as is standard in optimization, when φ∗ is a minimum 
of the constrained minimization problem and φ ∈ S , then

E(φ) − E(φ∗) = O(‖φ − φ∗‖2).

This is consistent with our results in Fig. 7.
In the current paper, we always use the energy based stopping criterion (5.12): for the 2D and 3D cases, a criteria based 

on φn,∞
err or rn,∞

err can lead to long computational times, most particularly for large rotations ω, even without changing the 
energy (see the example in subsection 6.2).

5.4. Convergence analysis

A full analysis of the convergence properties of our methods is beyond the scope of this paper, but we give in this section 
some elementary properties, and heuristics to understand their asymptotic performance.

Based on the expansion of the energy (5.4) as a function of θ for the steepest descent method, it is straightforward to 
prove that, when E is bounded from below and the step size θ is chosen optimally, the norm of the projected gradient 
Hφn φn − λnφn converges to 0. Convergence guarantees for the conjugate gradient method are harder, but can still be proven 
under a suitable restart strategy that ensures that the energy always decreases fast enough (for instance, the Armijo rule).

With additional assumptions on the non-degeneracy of critical points, we can even prove the convergence of φn to a 
critical point, that will generically be a local minimum. However, the question of the precise convergence speed of the 
steepest descent and conjugate gradient algorithms we use is problematic, because of three factors: the constraint ‖φ‖ = 1, 
the non-quadraticity of E , and the presence of a preconditioner. To our knowledge, no asymptotically optimal bound for this 
problem has been derived. Nevertheless, based on known results about the convergence properties of the conjugate gradient 
method for preconditioned linear systems on the one hand [42], and of steepest descent methods for nonlinear constrained 
minimization [2] on the other hand, it seems reasonable to expect that the convergence will be influenced by the properties 
of the operator

M = (1 − φφ∗)P (∇2 E(φ) − λI)(1 − φφ∗), (5.13)

where φ is the minimum and λ = λ(φ). This operator admits 0 as its lowest eigenvalue, associated with the eigenvector φ. 
It is reasonable to expect that the convergence rate will be determined by a condition number σ equals to the ratio of the 
largest to the lowest non-zero eigenvalue of this operator. As is standard for linear systems, we also expect that the number 
of iterations to achieve a given tolerance will behave like 

√
σ for the conjugate gradient algorithm, and σ for the steepest 

descent algorithm. As we will see in Section 6, this is verified in our tests.
The Hessian operator ∇2 E(φ), which includes a Laplace operator, is not bounded. Correspondingly, on a given discretiza-

tion domain, when the grid is refined, the largest eigenvalues of this operator will tend to +∞. For a linear meshsize h, 
the eigenvalues of ∇2 E(φ) will behave as O(h−2). This is another instance of the CFL condition already seen in the dis-
cretization of the imaginary time equation. The Hessian ∇2 E also includes a potential term V , which is often confining and 
therefore not bounded, such as the classical harmonic potential V (x) = |x|2, or more generally confining potentials whose 
growth at infinity is like |x|p , for some p > 0. Thus, even with a fixed meshsize h on a domain [−L, L]d , when L is increased, 
so will the largest eigenvalues of ∇2 E(φ), with a O(Lp) growth. When a steepest descent or conjugate gradient method 
is used without preconditioning, the convergence will be dominated by modes associated with largest eigenvalues of ∇2 E . 
This appears in simulations as high-frequency oscillations and localization at the boundary of the domain of the residual rn .

To remedy these problems and achieve a good convergence rate, adequate preconditioning is crucial.

5.5. Preconditioners

We consider the question of building preconditioners P for the algorithms presented above. In the schemes based on the 
discretization of the gradient flow, preconditioning is naturally needed when solving linear systems by iterative methods. In 
the steepest descent and conjugate gradient optimization schemes, it appears as a modification of the descent direction to 
make it point closer to the minimum:

dn := −P (Hφnφn − λnφn). (5.14)
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In both cases, the preconditioning matrix should be an approximation of the inverse of the Hessian matrix of the problem. 
If no preconditioner was applied, we denote

P I = I, (5.15)

where I is the identity operator.

Kinetic energy preconditioner. One of these approximations is to use only the kinetic energy term

P� = (α� − �/2)−1, (5.16)

where α� is a positive shifting constant to get an invertible operator. This has been called a “Sobolev gradient” in [30]
because it is equivalent to taking the gradient of the energy in the Sobolev H1-norm (with α� = 1/2). In the framework of 
the BESP scheme for the GPE with Krylov solver, a similar preconditioner has been proposed in [7], α� being the inverse of 
the time step �t of the semi-implicit Euler scheme. A closely-related variant is standard in plane-wave electronic structure 
computation [50], where it is known as the Tetter–Payne–Allan preconditioner [45]. This preconditioner is diagonal in 
Fourier space and can therefore be applied efficiently in our pseudo-spectral approximation scheme. On a fixed domain 
[−L, L]d , the effect of this preconditioner is to make the number of iterations independent from the spatial resolution h, 
because P∇2 E(φ), seen as an operator on the space of functions on [−L, L]d , will be equal to the identity plus a compact 
operator. This is supported by numerical experiments in Section 6. However, this operator is not bounded in the full domain 
Rd . Therefore, as L increases, so will the largest eigenvalues of P∇2 E(φ). For a potential V that grows at infinity like |x|p , 
the largest eigenvalues of P∇2 E(φ) are O(Lp), resulting in an inefficient preconditioner. Similarly, when η is large, the 
nonlinear term becomes dominant, and the kinetic energy preconditioner is inefficient.

The choice of α� is a compromise: if α� is too small, then the preconditioner will become close to indefinite, which 
can produce too small eigenvalues in the matrix (5.13) and hamper convergence. If α� is too big, then the preconditioner 
does not act until very large frequencies, and large eigenvalues result. We found that a suitable adaptive choice, that has 
consistently good performance and avoids free parameters, is

α� = λ̃n :=
∫ (

1

2
|∇φn|2 + V |φn|2 + η|φn|4

)
dx > 0 (5.17)

which is a positive number that represents the characteristic energy of φn . We use this choice for our numerical simulations.

Potential energy preconditioner. Another natural approach is to use the potential energy term for the preconditioner:

P V = (αV + V + η|φn|2)−1. (5.18)

Similarly, αV is a positive shifting constant to get an invertible operator. This preconditioner is diagonal in real space and can 
therefore be applied efficiently. Dual to the previous case, this preconditioner has a stable performance when the domain 
and η are increased, but deteriorates as the spatial resolution is increased. Such a preconditioner has been used in [7] when 
the gradient flow for the GPE is discretized through a BE scheme, leading then to a Thomas–Fermi preconditioner. In this 
study, the parameter αV was 1/�t . As in the kinetic energy case, we found it efficient to use αV = λ̃n , and we will only 
report convergence results for this choice of parameter.

Combined preconditioner. In an attempt to achieve a stable performance independent of the size of the domain or the spatial 
resolution, we can define the combined preconditioners

PC1 = P V P�, PC2 = P� P V (5.19)

or a symmetrized version

PC = P 1/2
V P� P 1/2

V . (5.20)

With these preconditioners, P∇2 E(φ) is bounded as an operator on L2(Rd) (this can be proven by writing explicitly its 
kernels in Fourier space and then using Schur’s test). However, we found numerically that this operator is not bounded 
away from zero, and has small eigenvalues of size O(L−p + h2). Therefore, the conditioning deteriorates as both the spatial 
resolution and the size of the domain increase.

In summary, for a spatial resolution h and a domain size L, the asymptotic condition numbers of the preconditioned 
Hessian with these preconditioners are

κ� = O(Lp),

κV = O(h−2),

κC = O
(

1
L−p+h2

)
= O(min(Lp,h−2)).

(5.21)

Therefore, the combined preconditioners act asymptotically as the best of both the kinetic and potential preconditioners. 
However, they might not be more efficient in the pre-asymptotic regime and require additional Fourier transforms.
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Computational efficiency. The application the operator P V is almost free (since it only requires a scaling of φ), but the naive 
application of P� requires a FFT/IFFT pair. However, since we apply the preconditioners after and before an application of 
the Hamiltonian, we can reuse FFT and IFFT computations, so that the application of P� does not require any additional 
Fourier transform. Similarly, the use of PC1 and PC2 only require one additional Fourier transform per iteration, and that of 
the symmetrized version PC two.

In summary, the cost in terms of Fourier transforms per iteration for the rotating GPE model is

• no preconditioner: 3 FFTs/iteration (get the Fourier transform of φ, and two IFFTs to compute �φ and Lzφ respectively),
• P� or P V : 3 FFTs/iteration,
• non-symmetric combined PC1 or PC2 : 4 FFTs/iteration,
• symmetric combined PC: 5 FFTs/iteration.

Note that this total cost might be different for another type of GPE model e.g. when a nonlocal dipole–dipole interaction is 
included [9,16].

As we will see in Section 6, all combined preconditioners have very similar performance, but the symmetrized one might 
be more stable in some circumstances. A theoretical explanation of these observations, and in particular of the effect of a 
non-symmetric preconditioner is, to the best of our knowledge, still missing.

6. Numerical results

We first introduce some notations. When we combine one of the preconditioners Pν (ν = I , �, V , C, C1, C2) (5.15)–(5.20)
with the steepest descent algorithm (Algorithm 1), we denote the resulting methods by PSDν . Similarly, we denote by PCGν

if the preconditioned conjugate gradient algorithm (Algorithm 2) was applied. In the following, we denote by #iter the 
number of global iterations for an iterative algorithm to get the converged solution with an a priori tolerance ε with respect 
to the stopping criterion (5.12).

Concerning the BESP schemes (4.4) and (4.7), at each outer iteration n, one needs to solve an implicit system with 
the operator (1/�t + Hφn

). We use a Krylov subspace iterative solver (MINRES here) with one of the preconditioners Pν

(ν = I, �, V , C) (5.16)–(5.19) to accelerate the number of inner iterations [7]. The preconditioned BESP schemes are then 
denoted by BEν , according to the chosen preconditioner. The number of iterations reported is equal to the sum of the inner 
iterations over the outer iterations.

In the following numerical experiments, we consider two types of trapping potential V (x): the harmonic plus lattice 
potential [13]

V (x) = V 0
d (x) +

⎧⎪⎪⎨⎪⎪⎩
κx sin2(qxx2),∑

ν=x,y κν sin2(qνν
2),∑

ν=x,y,z κν sin2(qνν
2),

with V 0
d (x) =

⎧⎪⎨⎪⎩
γ 2

x x2, d = 1,∑
ν=x,y γνν

2, d = 2,∑
ν=x,y,z γνν

2, d = 3,

(6.1)

and the harmonic plus quartic potential for d = 2, 3 [29,30,49]

V (x) = (1 − α)V 0
2 (x) + κ (x2 + y2)2

4
+

{
0, d = 2,

γ 2
z z2, d = 3.

(6.2)

Moreover, unless stated otherwise, we take the initial data as the Thomas Fermi approximation [7,13]:

φ0 = φTF
g

‖φTF
g ‖ , with φTF

g (x) =
{ √(

μTF
g − V (x)

)
/η, V (x) < μTF

g ,

0, otherwise,
(6.3)

where

μTF
g = 1

2

⎧⎨⎩
(3ηγx)

2/3, d = 1,

(4ηγxγy)
1/2, d = 2,

(15ηγxγyγz)
2/5, d = 3.

(6.4)

The algorithms were implemented in Matlab (Release 8.5.0).

6.1. Numerical results in 1D

Here, V (x) is chosen as the harmonic plus lattice potential (6.1) with γx = 1, kx = 25 and qx = π
2 . The computational 

domain and mesh size are respectively denoted as D = [−L, L] and h. In addition, to compare with the common existing 
method BESP, we choose the stopping criteria (5.12) with ε = 10−14 all through this section. For BESP, we choose �t = 0.01
unless specified otherwise, and fix the error tolerance for the inner loop to 10−10. Other values of the error tolerance were 
also tried, but this choice was found to be representative for the performance of BESP.
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Fig. 2. Example 6.1. Number of iterations to converge for different methods and different stepsizes, with different values of the discretization parameter h.

Fig. 3. Example 6.2. Number of iterations of PSDν and PCGν (ν = �, V ,C,C1,C2) to converge, for different nonlinear strengths η.

Example 6.1. We first compare the performance of various solvers without preconditioning in a simple case. We choose 
L = 16 and η = 250, and varying mesh sizes. We compare the method BEI given by (4.7), BEλ

I given by (4.4), and the 
steepest descent and conjugate gradient algorithms in Fig. 2. The difference between the methods BEI and BEλ

I is the 
inclusion of the chemical potential in the discretized gradient flow: we showed in Section 4 that both were equivalent for 
linear problems up to a renormalization in �t . We see here that this conclusion approximately holds even in the nonlinear 
regime (η = 0), with both methods performing very similarly until �t becomes large, at which point the BEλ

I effectively uses 
a constant stepsize (see (4.10)), while the large timestep in BEI makes the method inefficient. In this case, λ1 is positive, 
so that both methods converge to the ground state even for a very large �t . Overall we see that the optimum number of 
iterations is achieved for a value of �t of about 0.01, which we keep in the following tests to ensure a fair comparison. We 
also use the BEλ variant in the following tests.

For modest values of the discretization parameter h, the Backward Euler methods are less efficient than the steepest 
descent method (which can be interpreted as a Forward Euler iteration with adaptive stepsize). As h is decreased, the 
conditioning of the problem increases as h−2. The steepest descent/Forward Euler method is limited by its CFL condition, 
and its number of iterations grows like h−2, as can readily be checked in Fig. 2. The Backward Euler methods, however, use 
an efficient Krylov solver that is only sensitive to the square root of the conditioning, and its number of iterations grows 
only like h−1. Therefore it become more efficient than the steepest descent/Forward Euler method.

The conjugate gradient method is always more efficient than the other methods by factors varying between one and two 
orders of magnitude. Its efficiency can be attributed to the combination of Krylov-like properties (as the Backward Euler 
method, its iteration count displays only a h−1 growth) and optimal stepsizes.

Example 6.2. We compare now the performance of the steepest descent and conjugate gradient methods with different 
preconditioners. To this end, we consider the algorithms PSDν and PCGν with ν = �, V , C, C1, C2. The computational pa-
rameters are chosen as L = 128 and h = 1

64 , respectively. Fig. 3 shows the iteration number #iter for these schemes and 
different values of the nonlinearity strength η. From this figure and other numerical results not shown here, we can see that: 
(i) For each fixed preconditioner, the PCG schemes works better than the PSD schemes; (ii) the combined preconditioners 
all work equally well, and bring a reduction in the number of iteration, at the price of more Fourier transforms.

Example 6.3. In this example, we compare the performance of PSDν , PCGν and BEν (ν = I, �, V , C) with respect to different 
domain and mesh sizes. To this end, we fix η = 250. Fig. 4 shows the total iteration number for these schemes with different 
L and h. From this figure and additional numerical results not shown here for brevity, we see that: (i) Preconditioned solvers 
outperform unpreconditioned solvers; (ii) The potential preconditioner P V (5.18) makes the solver mainly depend on the 
spatial resolution h, while the kinetic potential preconditioner P� (5.16) prevents the deterioration as h decreases for a 
fixed L, consistent with the theoretical analysis in subsection 5.5; (iii) The deterioration is less marked for Krylov-based 
methods (BE and PCG) than for the PSD method, because Krylov methods only depends on the square root of the condition 
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Fig. 4. Example 6.3. Number of iterations to converge for BEν , PSDν and PCGν for ν = I, V ,�,C, vs. the mesh refinement h.

number (iv) The combined preconditioner PC (5.19) makes the solvers almost independent of both the parameters h and L, 
although we theoretically expect a stronger dependence. We attribute this to the fact that we start with a specific initial 
guess that does not excite the slowly convergent modes enough to see the dependence on h and L; (v) For each solver, the 
combined preconditioner PC performs best. Usually, PCGC is the most efficient algorithm, followed by PSDC, and finally BEC.

Example 6.4. We investigate further the performance of PCGC and PSDC with different nonlinear interaction strenghts η. 
To this end, we take L = 128 and different discretization parameters h. We vary the nonlinearity from η = 0 to η = 105. 
Fig. 5 depicts the corresponding iteration numbers to converge. We could clearly see that: (i) The iteration counts for both 
methods are almost independent on h, but both depend on the nonlinearity η; PCGC depends slightly on η while PSDC is 
more sensitive; (ii) For fixed η and h, PCGC converges much faster than PSDC.

From Examples 6.2–6.4, we see that PCGC, i.e. PCG with combined symmetric preconditioner PC (5.19) is the best solver. 
Hereafter, unless stated, we use PCGC as the default solver to compute the ground states.

6.2. Numerical results in 2D

Here, we choose V (x) as the harmonic plus quartic potential (6.2) with γx = γy = 1, α = 1.2 and κ = 0.3. The computa-
tional domain and mesh sizes are chosen respectively as D = [−16, 16]2 and h = 1

16 .
First, we test the evolution of the three errors (5.10)–(5.12) as the algorithm progresses. To this end, we take η = 1000

and ω = 3.5 as example. Fig. 6 plots the φn,∞
err , rn,∞

err and En
err errors with respect to the iteration number. We can see clearly 

that En
err converges faster the other two indicators, as expected. Considering φn,∞

err or rn,∞
err with an improper but relatively 

large tolerance would require a very long computational time to converge even if the energy would not change so much. 
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Fig. 5. Example 6.4. Number of iterations to converge for PSDC (left) and PCGC (right) with L = 128, and various values of h and η.

Fig. 6. Evolution of the errors vs. the total number of iterations.

Fig. 7. Example 6.5. Number of iterations for PCGC and PSDC for ω = 0 (left) and PCGC for different ω (right) vs. η.

This is most particularly true for large values of ω. In all the examples below, unless otherwise stated, we fix En
err (5.12)

with ε = 10−12 to terminate the code.

Example 6.5. In this example, we compare the performance of PCGC and PSDC for the 2D rotating case. To this end, V (x)

is chosen as the harmonic plus lattice potential (6.1) with γx = γy = 1, kx = ky = 25 and qx = qy = π
2 . The computational 

domain and mesh sizes are chosen respectively as D = [−32, 32]2 and h = 1
8 . Fig. 7 (left) shows the iteration number of 

PCGC and PSDC vs. different values of η for ω = 0, while Fig. 7 (right) reports the number of iterations of PCGC with respect 
to η and ω. From this figure, we can see that: (i) Similarly to the 1D case, PCGC outperforms PSDC; (ii) For ω = 0, the 
iteration number for PCGC would oscillate in a small regime, which indicates the very slight dependence with respect to 
the nonlinearity strength η. When ω increases, the number of iterations increases for a fixed η. Meanwhile, the depen-
dency on η becomes stronger as ω increases. Let us remark here that it would be extremely interesting to build a robust 
preconditioner including the rotational effects to get a weaker ω-dependence in terms of convergence.

Example 6.6. Following the previous example, here we compare the performance of PCGC and PCGC1 for different values ω. 
To this end, we fix η = 1000 and vary ω from 0 to 3.5. Fig. 8 illustrates the number of iterations of these method vs. 
different values of ω and there corresponding energies. From this figure and other experiments now shown here, we see 
that (i) All the methods converge to the stationary state with same energy; (ii) The symmetrized preconditioner has more 
stable performance than the non-symmetric version, a fact we do not theoretically understand.

Example 6.7. In this example, we apply PCGC to solve some more difficult problems. We compute the ground states φg of 
rotating BECs with large values of η and ω. To this end, we take L = 20, h = 1/16 and set the stopping tolerance in (5.12)
to ε = 10−14. Table 1 lists the CPU times for the PCGC solver to converge while Fig. 9 shows the contour plot of the density 
function |φg(x)|2 for different ω and η. We can see that the PCGC method converges very fast to the stationary states. Let 
us remark that, to the best of our knowledge, only a few results were reported for such fast rotating BECs with highly 
nonlinear (very large η) problems, although they are actually more relevant for real physical problems. Hence, PCGC can 
tackle efficiently difficult realistic problems on a laptop.
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Fig. 8. Example 6.6. Number of iterations for PCGC and PCGC1 (left) and its corresponding total energies (right) vs. ω.

Table 1
CPUs time (seconds) for PCGC to compute the ground states of the GPE with various ω and η.

η ω = 1 1.5 2 2.5 3 3.5 4 4.5

1000 493 551 560 2892 2337 720 966 3249

5000 1006 1706 867 6023 1144 1526 12514 19248

10000 4347 21525 5511 15913 15909 6340 16804 32583

Fig. 9. Example 6.7. Corresponding contour plots of the density function |φg (x)|2 of Table 1.

Example 6.8. The choice of the initial data also affects the final converged stationary states. Since all the algorithms we 
discussed are local minimization algorithms, inappropriate initial guess might lead to local minimum. To illustrate this 
claim, we take ε = 10−14, V (x) = |x|2

2 , η = 500 and compute the ground states of the rotating GPE for different ω and 10 
types of frequently used initial data

(a) φa(x) = 1√
π

e−(x2+y2)/2, (b) φb(x) = (x + iy)φa(x), (b̄) φb̄(x) = φ̄b(x), (6.5)

(c) φc = (φa(x) + φb(x))/2

‖(φa(x) + φb(x))/2‖ , (c̄) φc̄(x) = φ̄c(x), (6.6)

(d) φd = (1 − ω)φa(x) + ωφb(x)

‖(1 − ω)φa(x) + ωφb(x)‖ , (d̄) φd̄(x) = φ̄d(x), (6.7)

(e) φe = ωφa(x) + (1 − ω)φb(x)

ωφa(x) + (1 − ω)φb(x)‖ , (ē) φē(x) = φ̄e(x), (6.8)

( f ) Thomas Fermi approximation (6.3). (6.9)

Another approach to prepare some initial data is as follows: we first consider one of the above initial guess (a)–(f), next 
compute the ground state on a coarse spatial grid, say with a number of grid points Mp × Mp (with Mp = 2p ), and then 
denote the corresponding stationary state by φp

g . We next subdivide the grid with Mp+1 × Mp+1 points, interpolate φp
g on 

the refined grid Mp+1 × Mp+1 to get a new initial data and launch the algorithm at level p + 1, and so on until the finest 
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Table 2
Example 6.8. Fixed grid approach (with M = 29): converged energies and the CPU times (seconds) for the solution with lowest energy (which is underlined).

ω (a) (b) (b2) (c) (c2) (d) (d2) (e) (e2) (f) CPU

0.5 8.5118 8.2606 9.2606 8.0246 8.0197 8.0246 8.0197 8.0246 8.0197 8.0246 176.0
0.6 8.5118 8.1606 9.3606 7.5845 7.5910 7.5845 7.5845 7.5845 7.5910 7.5845 310.7
0.7 8.5118 8.0606 9.4606 6.9754 6.9731 6.9792 6.9754 6.9754 6.9792 6.9767 542.4
0.8 8.5118 7.9606 9.5606 6.1016 6.0997 6.1031 6.1031 6.1040 6.1019 6.1016 417.0
0.9 8.5118 7.8606 9.6606 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 1051.1
0.95 8.5118 7.8106 9.7106 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3280.5

Table 3
Example 6.8. Multigrid approach (starting from the coarsest level p = 6 to the finest level p = 9): converged energies and the CPU times (seconds) for the 
solution with lowest energy (underline).

ω (a) (b) (b2) (c) (c2) (d) (d2) (e) (e2) (f) CPU

0.5 8.0246 8.0197 8.0197 8.0197 8.0197 8.0197 8.0197 8.0197 8.0197 8.0257 29.5
0.6 7.5845 7.5845 7.5910 7.5845 7.5910 7.5890 7.5845 7.5845 7.5910 7.5845 32.3
0.7 6.9767 6.9726 6.9792 6.9754 6.9731 6.9731 6.9731 6.9757 6.9731 6.9731 53.3
0.8 6.1019 6.1031 6.1019 6.0997 6.1016 6.1016 6.1016 6.1019 6.1016 6.0997 75.2
0.9 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 4.7777 238.1
0.95 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 3.7414 621.9

Fig. 10. Contour plots of |φg (x)|2 corresponding to the lowest energy levels in Table 3.

grid with M × M points where the converged solution is still denoted by φg . Similar to [47], this multigrid technique is 
applied here begins with the coarsest grid M6 = 26 and ends with the finest grid M = 29. We use the tolerance parameters 
ε = 10−14 for M = 29, and ε = 10−12 for p = 6, 7, 8.

Tables 2 and 3 list the energies obtained by PCGC via the fixed and multigrid approaches, respectively, for different initial 
data and ω. The stationary states φg(x) with lowest energies are marked by underlines and the corresponding CPU times are 
listed in the same Table. Moreover, Fig. 10 shows the contour plots |φg(x)|2 of the converged solution with lowest energy 
obtained by the multigrid approach. Now, let us denote by E p

n := E(φ
p
n ) the evaluated energy at step n for a discretization 

level p = 6, 7, 8, and let E g = E(φg) the energy for the converged stationary state for the finest grid. Then, we represent on 
Fig. 11 the evolution of log10(|E p

n − E g |) vs. the CPU time for a rotating velocity ω = 0.95. For comparison, we also show the 
corresponding evolution obtained by the fixed grid approach. The contour plots of |φp

g (x)|2 obtained for each intermediate 
coarse grid for p = 6, 7, 8, and the initial guess are also reported.

From these tables and figures, we can see that: (i) Usually, the PCGC algorithm with an initial data of type (d) or (d̄) 
converges to the stationary state of lowest energy; (ii) The multigrid approach is more robust than the fixed grid approach 
in terms of CPU time and possibility to obtain a stationary state with lower energy.

6.3. Numerical results in 3D

Example 6.9. Here, we apply the PCGC algorithm to compute some realistic 3D challenging problems. To this end, V (x)

is chosen as the harmonic plus quartic potential (6.2), with γx = γy = 1, γz = 3, α = 1.4 and κ = 0.3. The computational 
domain is D = [−8, 8]3 and the mesh size is: h = 1

8 . We test four cases: (i) η = 100, ω = 1.4; (ii) η = 100, ω = 1.8; 
(iii) η = 5000 and ω = 3; (iv) η = 10000 and ω = 3. The initial guess is always taken as the Thomas–Fermi initial data and 
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Fig. 11. Example 6.8. Energy error log10(|E p
n − E g |) vs. the accumulated CPU time for ω = 0.95 with initial data (d) in Table 2 (p = 9, upper left) and 

respectively Table 3 (upper right) as well as the stationary state obtained at each intermediate level (lower, p = 6, 7, 8).

Fig. 12. Example 6.9. Isosurface |φg (x)|2 = 10−3 (upper) and surface plot of |φg(x, y, z = 0)|2 (lower) in Example 6.9. The CPU cost for these four cases are 
respectively 2256 (s), 1403 (s), 11694 (s) and 21971 (s).

the multigrid algorithm is used. Fig. 12 shows the isosurface |φg(x)|2 = 10−3 and the surface plot of |φg(x, y, z = 0)|2 for 
the four cases. The CPU times for these four cases are respectively 2256 s, 1403 s, 11694 s and 21971 s.

7. Conclusion

We have introduced a new preconditioned nonlinear conjugate gradient algorithm to compute the stationary states of 
the GPE with fast rotation and large nonlinearities that arise in the modeling of Bose–Einstein Condensates. The method, 
which is simple to implement, appears robust and accurate. In addition, it is far more efficient than standard approaches as 
shown through numerical examples in 1D, 2D and 3D. Furthermore, a simple multigrid approach can still accelerates the 
performance of the method and leads to a gain of robustness thanks to the initial data. The extension to much more general 
systems of GPEs is direct and offers an interesting tool for solving highly nonlinear 3D GPEs, even for very large rotations.
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