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In this paper, we propose some efficient and robust numerical methods to compute the 
ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation 
term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum 
(GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the 
ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method 
[4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian 
coordinates transform [14], we first reformulate the FSE into a new equation without 
rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum 
solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also 
prove some existence and nonexistence results for the ground states. Dynamical laws of 
some standard quantities, including the mass, energy, angular momentum and the center 
of mass, are stated. The ground states properties with respect to the fractional order and/or 
rotating frequencies, dynamics involving decoherence and turbulence together with some 
interesting phenomena are reported.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, a great deal of attention has been directed towards the derivation of a powerful generalization of PDEs through 
the inclusion of fractional order operators [26,35,42,51]. The aim of this paper is to contribute to this new hot area for frac-
tional quantum physics, with possible applications, e.g. in Bose–Einstein condensation (BEC). During the last decades, the 
classical Schrödinger Equation (SE) has been widely investigated and applied to many areas in physics (optics, electromag-
netic, superfluidity, etc.). It is known as the fundamental equation of classical quantum mechanics which can be interpreted 
by the Feynman path integral approach over Brownian-like quantum paths [32]. Lately, Laskin extended the Feynman path 
integral approach over the more general Lévy-like quantum paths and derived a Fractional Schrödinger Equation (FSE), 
which modifies the SE by involving the fractional Laplacian (−�)s [46–48]. The FSE was then applied to represent the Bohr 
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atom, fractional oscillator [48], and it is a new fractional approach to study the quantum chromodynamics (QCD) problem of 
quarkonium [46]. The FSE also arises in the continuum limit of the discrete SE with long-range dispersive interaction [43], 
in the mathematical description of boson stars [28] and in some models of water wave dynamics [39]. It has also been 
proposed to study BEC of which the particles obey a non-Gaussian distribution law [30,56,57], where FSE was named as 
Fractional Gross–Pitaevskii Equation (FGPE) and BEC as Fractional BEC (FBEC). Compared with the SE, the literature on FSE 
is quite limited but growing quickly to understand its mathematical and physical properties.

More precisely, we consider here the following generalized dimensionless (space-) Fractional NonLinear Schrödinger 
equation (FNLSE) with a rotation term and a nonlocal nonlinear interaction

i∂tψ(x, t) =
[

1

2

(
−∇2 + m2

)s + V (x) + β|ψ(x, t)|2 + λ�(x, t) − �Lz

]
ψ(x, t), (1.1)

�(x, t) = U ∗ |ψ(x, t)|2, x ∈Rd, t > 0, d ≥ 2. (1.2)

In the context of BEC, this equation is also called as FGPE. Here, ψ(x, t) is the complex-valued wave-function, t > 0 is 
the time variable and x ∈ Rd is the spatial coordinate. The constant m ≥ 0 denotes the scaled particle mass, with m = 0
representing the massless particle. The parameter s > 0 is the space fractional order characterizing the nonlocal dispersive 
interaction. Hereafter, we call the fractional dispersion as superdispersion (subdispersion) for s > 1 (s < 1). In addition, the 
fractional kinetic operator is defined via a Fourier integral operator(

−∇2 + m2
)s

ψ = 1

(2π)d

∫
Rd

ψ̂(k) (|k|2 + m2)seik·xdk, (1.3)

where the Fourier transform is given by ψ̂(k) = ∫
Rd ψ(x)e−ik·xdx. The potential V (x) is supposed to be trapping, a standard 

example being the harmonic potential given by

V (x) =
⎧⎨⎩

γ 2
x x2+γ 2

y y2

2 , d = 2,

γ 2
x x2+γ 2

y y2+γ 2
z z2

2 , d = 3,

(1.4)

where γv (v = x, y, z) is the trapping frequency in the v-direction. The real-valued constants β and λ characterize the local 
and nonlocal interaction strengths (positive/negative for repulsive/attractive interaction), respectively. The local interaction is 
supposed to be cubic, but other choices may also be considered. Concerning the nonlocal interaction (1.2), the convolution 
kernel U(x) can be chosen as either the kernel of a Coulomb-type interaction or a Dipole–Dipole Interaction (DDI) [13,16,21]

U(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2d−1π |x|μ , 0 < μ ≤ d − 1,

−δ(x) − 3 ∂nn

(
1

4π |x|
)

,

− 3
2

(
∂n⊥n⊥ − n2

3∇2⊥
)( 1

2π |x|
)

,

⇐⇒ Û(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

|k|d−μ , 0 < μ ≤ d − 1, Coulomb,

−1 + 3(n·k)2

|k|2 , 3D DDI,

3[(n⊥·k)2−n2
3|k|2]

2|k| , 2D DDI,

(1.5)

where C = πd/2−121−μ�(
d−μ

2 )/�(
μ
2 ) (�(t) := ∫ ∞

0 xt−1e−xdx is the Gamma function), n = (n1, n2, n3)
T ∈ R3 is a unit vector 

representing the dipole orientation and n⊥ = (n1, n2)
T . In addition, Lz = −i(x∂y − y∂x) = −i∂θ is the z-component of the 

angular momentum, � represents the rotating frequency.
The FNLSE conserves two important physical quantities (see Section 4.1): the mass

N (ψ(·, t)) := N (t) :=
∫
Rd

|ψ(x, t)|2dx ≡ N (0), (1.6)

and the energy

E(ψ(·, t)) =: E(t) =
∫
Rd

[1

2
ψ̄

(−∇2 + m2)s
ψ + V (x)|ψ |2 + β

2
|ψ |4 + λ

2
�|ψ |2 − �ψ̄ Lzψ

]
≡ E(0). (1.7)

Here, ψ̄ is the complex conjugate of ψ . The ground states φg(x) of the FNLSE (1.1) are defined by

φg(x) = arg min
φ∈S

E(φ), S = {φ ∈C| ‖φ‖2 = 1,E(φ) < ∞}, (1.8)

where ‖φ‖2 is the L2(Rd)-norm of φ.
The FNLSE (1.1) brings together a wide range of Schrödinger-type PDEs. When s = 1 and m = 0, FNLSE reduces to the 

standard nonlinear Schrödinger equation (NLSE), which has been extensively studied both theoretically and numerically [2,
3,5–7,9,12–16,20,25]. For s ∈ (0, 1) and � taken as the Coulomb potential, (1.1) reduces to the generalized semi-relativistic 
Hartree equation. The corresponding Cauchy problem (for s ∈ [ 1 , 1]) as well as its ground state properties (for s = 1 ) 
2 2
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have been partially investigated [1,21,23,24,28,34]. Nevertheless, to the best of our knowledge, there are neither theoretical 
nor numerical studies on the ground state properties for s > 0 other than the cases s = 1/2 and 1. When s ∈ (0, 1) and 
m = λ = � = 0, it reduces to the FNLSE that is originally derived by Laskin [46]. Since then, the FNLSE has attracted 
an increasing attention. Stationary states and dynamics properties have been partially considered in some special cases. 
We refer to [22,38,52–54] and references therein for more details. For the superdispersion case, i.e. s > 1, there are few 
Schrödinger-type equations, while it is quite common for the superdiffusion equations [37]. We consider here this case for 
some possible eventual physical applications.

In general, it is difficult to obtain analytical solutions for the FNLSE. Even for the simplest case with a box potential, 
there is still a controversy over the eigenpair solutions [17,18,36,40]. Therefore, to develop accurate numerical methods 
is quite crucial. So far there are very limited numerical studies. When � = λ = 0, finite difference (FD) scheme [58] and 
Fourier pseudo-spectral method [27,44,45] were proposed to study the dynamics. When the nonlocal interaction is present 
(i.e. λ 
= 0), for the 3D semi-relativistic Hartree equation, Bao and Dong [11] proposed a sine pseudo-spectral method to 
compute its ground states and dynamics, where the nonlocal Coulomb potential � (1.2) satisfies the following Poisson 
equation

−�� = |ψ |2, x ∈R3, with lim|x|→∞�(x) = 0. (1.9)

Similar ideas were applied to nonlocal DDI in NLSE [9,10]. However, due to the slow polynomial decay of � at the far-field, 
a quite large computational domain is necessary to guarantee a satisfactory accuracy. Up to now, most existing numerical 
methods are proposed for non-rotating FNLSE with s ≤ 1. As far as we know, there were neither theoretical nor numerical 
methods for the generalized FNLSE (1.1) for s 
= 1 and λ� 
= 0. The difficulties to develop an accurate and efficient scheme 
lie in the evaluation of the nonlocal interaction � (1.2) and proper treatment of the rotation term Lzψ .

To compute the nonlocal interaction, Jiang et al. [41] proposed an accurate NonUniform Fast Fourier Transform 
(NUFFT)-based algorithm which is within O (N log N) arithmetic operations (N is the total number of grid points). This 
solver is more accurate than the PDE approach (1.9) and has been recently applied in the study of the ground state and 
dynamics of NLSE [13,16]. Recently, by approximating the kernel U(x) with the summation of a finite number of Gaus-
sians, Zhang et al. [31] proposed a Gaussian-sum (GauSum)-based method, which improves the efficiency compared with 
NUFFT-based algorithm meanwhile maintains the spectral accuracy. Concerning the rotation term, Antoine and Duboscq 
[4,7] proposed a robust preconditioned Krylov subspace spectral solver for ground states computation of the NLSE with 
large � and β . For the dynamics, Bao et al. [14] developed a rotating Lagrangian coordinates transformation method to 
reformulate the rotating term into a time-dependent trapping potential, which allows for the implementation of high-order 
time-splitting schemes [19].

The main objectives of this paper are threefold.

1. Investigate theoretically the existence of the ground states of the general FNLSE (1.1) with respect to the fractional order 
s and the rotation speed �. Develop the dynamical laws for the center of mass as well as other standard dynamical 
quantities for general s and �, and compare them with those derived in [44].

2. Develop some efficient and accurate numerical methods for computing the ground states and dynamics of the general 
FNLSE (1.1) by incorporating the GauSum solver into the adapted version of the gradient flow and time-splitting Fourier 
pseudo-spectral method. The preconditioned Krylov subspace iteration [4] and the rotating Lagrangian transformation 
technique [14] will be also integrated into the numerical methods for the ground state computation and dynamics 
simulation, respectively.

3. Apply our numerical methods to study some interesting problems, e.g., the influence of the nonlocal dispersion on the 
ground states and on the dynamics such as chaos and decoherence.

The rest of the paper is organized as follows. In Section 2, we briefly review the Gaussian Sum method. The ground state 
computation, including the ground states properties and numerical methods as well as numerical results, are presented in 
Section 3. In Section 4, we derive some dynamical laws for some global physical quantities that are usually considered for 
the standard NLSE. We then propose an efficient and robust numerical method for the dynamics simulation. Some numerical 
results are also reported. Finally, a conclusion and some discussions are developed in Section 5.

2. Brief review of the Gaussian-Sum (GauSum) method

With the strong confining potential, the density ρ := |ψ |2 is smooth and decays exponentially fast. Therefore, we can 
reasonably truncate the whole space to a bounded domain, e.g., a square box BL := [−L, L]d . The density is then rescaled to 
be compactly supported in a unit box B1, which is now the computational domain. One of the key ideas is to use a GauSum 
approximation of the kernel U (see UGS in (2.5)) to reformulate the potential into two integrals, namely, the long-range 
regular integral and the short-range singular integral. To be precise, we can reformulate the potential (1.2) as follows

�(x) ≈
∫

U(x − y) ρ(y)dy =
∫

U(y) ρ(x − y)dy (2.1)
B1 B2
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=
∫
B2

UGS(y) ρ(x − y)dy +
∫
Bδ

(
U(y) − UGS(y)

)
ρ(x − y)dy + Iδ (2.2)

:= I1(x) + I2(x) + Iδ, x ∈ B1, (2.3)

where

Iδ =
∫

B2\Bδ

(
U(y) − UGS(y)

)
ρ(x − y)dy, (2.4)

with Bδ := {x
∣∣|x| ≤ δ} being a small neighborhood of the origin with radius δ ∼ 10−4 − 10−3 and UGS is given explicitly as 

follows

UGS(y) = UGS(|y|) :=
Q∑

q=0

wq e−τ 2
q |y|2 , Q ∈ N+, (2.5)

with weights and nodes {(wq, τq)}Q
q=0. Here, UGS designates an accurate approximation of U , up to ε0 ∼ 10−14 − 10−16, 

within the interval [δ, 2], i.e.

‖U(r) − UGS(r)‖L∞([δ,2]) ≤ ε0. (2.6)

For (2.4), we have |Iδ| ≤ Cε0 δd ‖ρ‖L∞ . Thus the remainder integral Iδ is negligible and is omitted here. Note that the 
GauSum approximation can be numerically computed with sinc quadrature and we refer to [31] for more details.

To compute the regular integral I1, plugging the explicit GauSum approximation (2.5) into I1(x) yields

I1(x) =
Q∑

q=0

wq

∫
B2

e−τ 2
q |y|2ρ(x − y)dy, x ∈ B1. (2.7)

For x ∈ B1 and y ∈ B2, we have x − y ∈ B3. We then can approximate ρ(x − y) on B3 by finite Fourier series. More precisely, 
ρ can be well approximated by Fourier series after zero-padding to B3 as follows

ρ(z) ≈
∑

k

ρ̂k

d∏
j=1

e
2π ik j

b j−a j
(z j−a j)

, z = (z1, . . . , zd) ∈ B3, (2.8)

where a j = −3, b j = 3, j = 1, . . . , d and k ∈ Zd . After some careful calculations, we have

I1(x) =
∑

k

ρ̂k

⎛⎝ Q∑
q=0

wqGq
k

⎞⎠ d∏
j=1

e
2π ik j

b j−a j
(x j−a j)

, (2.9)

where

Gq
k =

d∏
j=1

2∫
−2

e−τ 2
q |y j |2 e

−2π ik j y j
b j−a j dy j =

d∏
j=1

2∫
0

2 e−τ 2
q |y j |2 cos(

2πk j y j
b j−a j

)dy j, (2.10)

can be pre-computed once for all if the potential is computed on the same grid.
For the near-field correction integral I2, within the small ball Bδ , the density function ρx(y) := ρ(x − y) is approximated 

by a low-order Taylor expansion as follows

ρx(y) ≈ Px(y) = ρx(0) +
d∑

j=1

∂ρx(0)

∂ y j
y j + 1

2

d∑
j,k=1

∂2ρx(0)

∂ y j∂ yk
y j yk + 1

6

d∑
j,k,�=1

∂3ρx(0)

∂ y j∂ yk∂ y�

y j yk y�

= ρ(x) +
d∑

j=1

(∂y j ρ)(x)y j + 1

2

d∑
j,k=1

(∂y j ykρ)(x)y j yk + 1

6

d∑
j,k,�=1

(∂y j yk y�
ρ)(x)y j yk y�. (2.11)

The derivatives involved are computed by differentiating the density’s Fourier series approximation. Next, we replace ρx(y)

by its Taylor approximation Px(y) and integrate in spherical/polar coordinates. The computation boils down to a multiplica-
tion of the Laplacian �ρ since the contributions of the odd-order derivatives in (2.11) and off-diagonal components of the 
Hessian vanish. To be precise, we first present for the 2D Coulomb potential case. Starting from the density’s Fourier series 
approximation
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ρ(x) =
∑

k

ρ̂k e
i 2πk1(x+3)

6 e
i 2πk2(y+3)

6 =:
∑

k

ρ̂k ωk1(x)ωk2(y), x ∈ B3, (2.12)

by differentiating (2.12), we obtain the derivatives in (2.11). For example, we get ∂xyρ as follows

∂xyρ(x) =
∑

k

ρ̂k μk1μk2 ωk1(x)ωk2(y), with μk j = i 2πk j/6, j = 1,2. (2.13)

All the other coefficients are computed likewise. Replace ρx in (2.3) by its Taylor approximation Px(y) and integrate with 
respect to y, we have

I2(x) ≈
∫
Bδ

(
U(y) − UGS(y)

)
Px(y)dy :=

∫
Bδ

DGS(y) Px(y)dy

= ρ(x)

∫
Bδ

DGS(y)dy +
2∑

j=1

(∂y j ρ)(x)

∫
Bδ

DGS(y) y jdy

+ 1

2

2∑
j,k=1

(∂y j ykρ)(x)

∫
Bδ

DGS(y) y j ykdy + 1

6

d∑
j,k,�=1

(∂y j yk y�
ρ)(x)

∫
Bδ

DGS(y) y j yk y�dy,

where DGS(y) := U(y) − UGS(y) is radial symmetric. All the odd-order derivative terms vanish because the corresponding 
integrands are all anti-symmetric, and I2 evaluation comes down to a summation of the even-order derivative terms. For 
the second-order derivatives, the integral corresponding to ∂xyρ vanishes for the same reason. Finally, we have

I2(x) ≈ ρ(x)

∫
Bδ

DGS(y)dy + 1

2

(
∂xxρ(x)

∫
Bδ

DGS(y) x2dy + ∂yyρ(x)

∫
Bδ

DGS(y) y2dy
)

(2.14)

= ρ(x)

∫
Bδ

DGS(y)dy + 1

2
(�ρ)(x)

∫
Bδ

DGS(y) x2dy, x ∈R2. (2.15)

The last identity holds because 
∫
Bδ

DGS(y)x2dy = ∫
Bδ

DGS(y)y2dy. The two integrals in (2.15) are precomputed analytically 
once for all in polar coordinates. The I2 evaluation comes down to a summation of the density and its Laplacian. As for 
the 3D Coulomb potential case, I2 can be computed in a similar way as the 2D case. After plugging Taylor expansion 
approximation Px(y) and integrating over Bδ ⊂ R3, we have

I2(x) ≈ ρ(x)

∫
Bδ

DGS(y)dy + 1

2
(�ρ)(x)

∫
Bδ

DGS(y) x2dy, x ∈R3. (2.16)

The GauSum method achieves a spectral accuracy and is essentially as efficient as FFT algorithms within O (N log N)

arithmetic operations. The algorithm was implemented for the Coulomb-type kernels in [31]. The evaluations of 2D and 3D 
DDIs boil down to the Coulomb potential evaluation with modified densities. More explicitly, the DDIs can be reformulated 
as follows

�(x) = −3

2

(
∂n⊥n⊥ − n2

3∇2⊥
)(

1

2π |x|
)

∗ ρ =
(

1

2π |x|
)

∗
(

−3

2
(∂n⊥n⊥ρ − n2

3∇2⊥ρ)

)
, x ∈ R2, (2.17)

�(x) = −(n · n)ρ(x) + ∂nn

(
1

4π |x|
)

∗ ρ = −(n · n)ρ(x) + 1

4π |x| ∗ (∂nnρ) , x ∈R3. (2.18)

To compute the DDIs, we just need to substitute the modified densities, i.e. − 3
2 (∂n⊥n⊥ρ − n2

3∇2⊥ρ) and (∂nnρ) for ρ in (2.1)
for the 2D and 3D cases, respectively. The modified densities are also computed via a similar Fourier series approximation 
procedure as shown in (2.13).

3. Ground state computation: properties, numerical scheme and simulations

In this section, we first prove some results related to the existence/non-existence of the ground states (subsection 3.1). 
We next propose in subsection 3.2 an efficient and accurate numerical method for computing the ground states by combin-
ing the normalized gradient flow which is discretized by the semi-implicit backward Euler Fourier pseudo-spectral method 
and the Gaussian-Sum nonlocal interaction solver. We shall refer to this new method as GF-GauSum hereafter. Finally, sub-
section 3.3 reports some results on the ground states to show some special features related to FNLSEs.
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3.1. Existence and nonexistence of the ground states

To simplify the presentation, we divide the energy functional E(φ) (1.7) into five parts, i.e. the kinetic, potential, rotating, 
local and nonlocal interactions energy parts

E(φ(x)) = Ekin(φ) + Epot(φ) + Erot(φ) + Eint(φ) + Enon(φ), (3.1)

where

Ekin(φ) := 1

2

〈(−∇2 + m2)s
φ,φ

〉
, Epot(φ) := 〈V (x)φ,φ〉,

Erot(φ) = −�〈Lzφ,φ〉, Eint(φ) := β

2
〈|φ|2, |φ|2〉, Enon(φ) := λ

2
〈�, |φ|2〉,

with 〈 f , g〉 = ∫
Rd f ḡ dx. We first prove some properties of the energy functional E(φ(x)) for any φ ∈ S .

Lemma 3.1. If the convolution kernel U(x) in (1.5) is chosen as the Coulomb-type interaction and V is the harmonic potential defined 
by (1.4), we have the following properties

(i) For any positive ε > 0, we have for φ ∈ S∣∣∣〈�,ρ
〉∣∣∣ =

∣∣∣〈U(x) ∗ ρ,ρ
〉∣∣∣ ≤ ε‖∇φ‖2

2 + Cε, (3.2)

where Cε is a real-valued constant that depends only on d, μ and ε.
(ii) When s > 1, for any m ≥ 0 and φ ∈ S, we have∫

Rd

[1

8
φ̄
(−∇2 + m2)s

φ +
(

V (x) − γ 2
r |x|2

2

)
|φ|2 + β

2
|φ|4

]
dx + C1 ≤ E(φ)

≤
∫
Rd

[7

8
φ̄
(−∇2 + m2)s

φ +
(

V (x) + γ 2
r |x|2

2

)
|φ|2 + β

2
|φ|4

]
dx + C2, (3.3)

where γr = min{γx, γy}, C1 and C2 are two constants that only depend on �, s, γr , d and μ.

Proof. (i) Using the Hardy–Littlewood–Sobolev (HLS) inequality, we have for the Coulomb-type interaction∣∣∣〈�,ρ
〉∣∣∣ =

∣∣∣〈U(x) ∗ ρ,ρ
〉∣∣∣ = 1

2d−1π

∫
Rd

∫
Rd

ρ(x)ρ(y)

|x − y|μ dxdy ≤ cd,μ‖ρ‖2
p = cd,μ‖φ‖4

2p, (3.4)

where 1 < p = 2d
2d−μ ≤ 2d

d+1 < 2 and the constant cd,μ depends only on d and μ. For the 3D case, i.e d = 3, let us introduce 
σ = 3−p

2p . By the Hölder’s inequality [49], we have∣∣∣〈�,ρ
〉∣∣∣ ≤ cd,μ

(
‖φ‖σ

2 ‖φ‖1−σ
6

)4 = cd,μ

(
‖φ‖2

6

)2(1−σ )

. (3.5)

Now that μ ≤ d − 1, we have 0 < 2(1 − σ) = μ
2 ≤ 1. Thus, by Young’s inequality [49], for ∀ ̃ε > 0, we obtain(

‖φ‖2
6

)2(1−σ ) ≤ 2(1 − σ) ε̃ ‖φ‖2
6 + (2σ − 1)̃ε

2σ−2
2σ−1 . (3.6)

Thus, together with the Sobolev inequality ([49], Chapter 8 Eq. (1)), i.e., there exists a constant C such that

‖φ‖2
6 ≤ C‖∇φ‖2, (3.7)

we obtain∣∣∣〈�,ρ
〉∣∣∣ ≤ 2(1 − σ) cd,μ ε̃ C ‖∇φ‖2 + (2σ − 1)cd,με̃

2σ−2
2σ−1 =: ε ‖∇φ‖2 + Cε. (3.8)

Similarly, for the 2D case, let q = 4p
2−p > 2p > 2 and σ = q−2p

p(q−2)
. Then, one gets∣∣∣〈�,ρ

〉∣∣∣ ≤ cd,μ

(
‖φ‖σ

2 ‖φ‖1−σ
q

)4 = cd,μ

(
‖φ‖2

q

)2(1−σ ) ≤ ε̃ ‖φ‖2
q + C̃ε ≤ ε ‖∇φ‖2

2 + Cε. (3.9)

(ii) Let γr = min{γx, γy}. By Young’s inequality and Plancherel’s formula, we have
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∣∣∣�∫
Rd

φ̄Lzφ dx
∣∣∣ ≤

∫
Rd

[∣∣(γr xφ̄) (�∂yφ/γr)
∣∣ + ∣∣(γr yφ̄) (�∂xφ/γr)

∣∣dx
]

≤ γ 2
r

2

∫
Rd

|x|2|φ|2dx + �2

2γ 2
r

∫
Rd

∣∣∇φ
∣∣2

dx = γ 2
r

2

∫
Rd

|x|2|φ|2dx + �2

2γ 2
r (2π)d

∫
Rd

|k|2|φ̂|2dk

≤ γ 2
r

2

∫
Rd

|x|2|φ|2dx + �2

2γ 2
r (2π)d

∫
Rd

[γ 2
r (|k|2 + m2)s

2�2
+

( γ 2
r

2�2

) 1
1−s

]
|φ̂|2 dk − �2m2

2γ 2
r

≤ γ 2
r

2

∫
Rd

|x|2|φ|2dx + 1

4

∫
Rd

φ̄
(−∇2 + m2)s

φ dx + C . (3.10)

Similarly, for the Coulomb-type nonlocal interaction, together with (3.2), we have∣∣∣λ
2

〈
�,ρ

〉∣∣∣ ≤ ε̃‖∇φ‖2
2 + C̃ε = ε̃

(2π)d

∫
Rd

|k|2 |φ̂|2 dk + C̃ε ≤ 1

(2π)d

∫
Rd

[1

8
(|k|2 + m2)s + C

]
|φ̂|2 dk

= 1

8

∫
Rd

φ̄
(−∇2 + m2)s

φ dx + C . (3.11)

Therefore, the inequality (3.3) follows from (3.10) and (3.11). �
Theorem 3.1. If V (x) is a trapping harmonic potential defined in (1.4), then the following properties hold.

(i) If s > 1 and β ≥ 0, then there exists a ground state of the FNLSE for all � > 0 if one of the following conditions holds:
(A) U(x) reads as Coulomb-type. (B) For 3D DDI: −β/2 ≤ λ ≤ β .
(C) For 2D DDI: (c1) λ = 0. (c2) λ > 0 and n3 = 0. (c3) λ < 0 and n2

3 ≥ 1
2 .

(ii) If � = 0, β ≥ 0, then the ground state exists for all s > 0 if one of the following conditions holds:
(1) U(x) reads as Coulomb-type and λ ≥ 0.(2) (B) or (C) in (i) holds.

(iii) If 0 < s < 1, there exists no ground state if one of the following conditions holds:
(A) ∀ � > 0, λ = 0. (B) ∀ � > 0, U(x) is a Coulomb-type interaction or a 3D DDI.

(C) U(x) is the 2D DDI, ∀ � > �0 = c|λ| 2
5 with c = ( (2π2+1)4γ 6

48eπ9

) 1
5 (≈ 0.54 for γ = 1). Here, γ = max{γx, γy}.

Proof. (i) For the Coulomb-type interaction, it is clear by Lemma 3.1 that the energy functional E is bounded below, coercive 
and weakly lower semi-continuous on S . Hence, (A) follows. For the DDI, the proof is similar as those for the non-fractional 
case [9,10] by noticing (3.10). Similar arguments lead to (ii).
(iii) Denote γ = max{γx, γy}. In 2D, we choose the function

φn(x) = F−1(φ̂n)(x), with φ̂n(k) = F(φn)(k) =
(

4πεn+1
)1/2

(n!)−1/2exp(−ε|k|2/2)|k|neinθ . (3.12)

By Plancherel’s formula, it is easy to check that ‖φn‖2 = 1
2π ‖φ̂n‖2 = 1, and thus φn ∈ S . Let ρn = |φn|2. By Young’s inequality 

and Cauchy–Schwarz inequality, we obtain

E1(φn) =: Ekin(φn) + Epot(φn) + Erot(φn)

≤ 1

4π2

[
1

2
〈(|k|2 + m2)s

φ̂n, φ̂n〉 − γ 2

2
〈�φ̂n, φ̂n〉 − i�〈̂ J zk φ̂n, φ̂n〉

]

≤ em2ε

2εs

�(n + 1 + s)

�(n + 1)
+

(
εγ 2

2
− �

)
n + εγ 2

2
, (3.13)

|Eint(φn)| = |β|
2

‖ρn‖2
2 = |β|

2(2π)6
‖φ̂n ∗ φ̂∗

n‖2
2 ≤ |β|

2(2π)4

(
1

(2π)2
‖φ̂n‖2

2

)
‖ ̂̄φn‖2

1

= |β|
4
‖φ̂n‖2

1 = |β| 2n
(
�(n/2 + 1)

)2

. (3.14)

2(2π) 2πε �(n + 1)
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Furthermore, we compute the nonlocal interaction energy Enon(φn). For the Coulomb-type interaction, by using the HLS 
inequality (3.4) and the Hölder’s inequality, we obtain

∣∣Enon(φn)
∣∣ ≤ cμ|λ|

2
‖ρn‖2

p ≤ c̃μ‖ρn‖2−μ
1 ‖ρn‖μ

2 ≤ c̃μ

[
1

πε

2n
(
�(n/2 + 1)

)2

�(n + 1)

]μ/2

, (3.15)

where p = 4
4−μ , 0 < μ ≤ 1, and ̃cμ depends only on μ and λ. Together with the Stirling’s formula

�(x + 1) ∼
√

2πx
( x

e

)x
, when x → ∞, (3.16)

one gets

|Eint(φn)| ∼
√

n, |Enon(φn)| ∼
√

n, n → ∞. (3.17)

Let ε < 2�

γ 2 , ∀ � > 0 and s < 1, we then prove that

lim sup
n→∞

E(φn) ≤ lim sup
n→∞

[
E1(φn) + |Eint(φn)| + Enon(φn)

]
≤ lim sup

n→∞

[
c2ns

2εs
+

(
εγ 2

2
− �

)
n + c1

√
n + c0

]
= −∞, (3.18)

which implies the nonexistence of the ground states. Thus (B) follows. (A) also results by simply setting c1 = 0 in (3.18). For 
the 2D DDI, we have∣∣Enon(φn)

∣∣ = |λ|
8π2

∣∣〈Û ρ̂n, ρ̂n
〉∣∣ ≤ |λ|

8π2

〈3(|k · n⊥|2 + n2
3|k|2)

2|k| ρ̂n, ρ̂n

〉
≤ 3|λ|

16π2

〈|k| ρ̂n, ρ̂n
〉
. (3.19)

By the generalized Minkowski inequality, we obtain

4π2
(〈|k| ρ̂n, ρ̂n

〉) 1
2 =

⎡⎢⎣∫
R2

|k|
∣∣∣ ∫
R2

φ̂n(k − ξ) ̂̄φn(ξ)dξ
∣∣∣2

dk

⎤⎥⎦
1
2

≤
∫
R2

⎡⎢⎣∫
R2

|k|∣∣φ̂n(k − ξ)
∣∣2∣∣ ̂̄φn(ξ)

∣∣2
dk

⎤⎥⎦
1
2

dξ

=
∫
R2

∣∣ ̂̄φn(ξ)
∣∣
⎡⎢⎣∫
R2

|k − ξ |∣∣φ̂n(k)
∣∣2

dk

⎤⎥⎦
1
2

dξ ≤
∫
R2

∣∣ ̂̄φn(ξ)
∣∣
⎡⎢⎣∫
R2

(|k| + |ξ |)∣∣φ̂n(k)
∣∣2

dk

⎤⎥⎦
1
2

dξ

≤
∫
R2

∣∣ ̂̄φn(ξ)
∣∣
⎡⎢⎣√|ξ | +

(∫
R2

|k|∣∣φ̂n(k)
∣∣2

dk
) 1

2

⎤⎥⎦dξ =
(∥∥√|k| φ̂n

∥∥
1 + ∥∥φ̂n

∥∥
1 ‖√|k| φ̂n‖2

)

= π
1
2 2

n
2 + 9

4

ε
3
4

�(n
2 + 5

4 )√
�(n + 1)

+ π
5
2 2

n
2 +3

ε
3
4

√
�(n + 3

2 )�(n
2 + 1)

�(n + 1)
. (3.20)

Again, by the Stirling’s formula (3.16), we show that

|Enon(φn)| � c3|λ|
ε3/2

n, n → ∞, (3.21)

where c3 = 3
√

2(2π2+1)2

32π 4√eπ
. Let us set ε =

(
3c3|λ|/γ 2

) 2
5

and � > �0 = ( (2π2+1)4γ 6

48eπ9

) 1
5 |λ| 2

5 . It follows that

lim sup
n→∞

E(φn) ≤ lim sup
n→∞

[
c2ns

2εs
+

(
εγ 2

2
+ c3

ε
3
2

− �

)
n + c1

√
n + c0

]
= −∞,

leading to the nonexistence of the ground states. Hence (C) follows.

In 3D, we choose the sequence

φ3D
n (x) = φn(x, y)φ(z), (3.22)

where φ(z) = ( γz
π

)1/4
exp{− γz z2

2 } and φn(x, y) = F−1(φ̂n(k)), with φ̂n(k) reading as (3.12). Then, the argument proceeds 
similarly as those in 2D for the 3D Coulomb potential. As for the 3D DDI, noticing that



82 X. Antoine et al. / Journal of Computational Physics 325 (2016) 74–97
|Enon(φ3D
n )| ≤ 3|λ|

2
‖φ3D

n ‖4
4 = 3|λ|√γz

2
√

2π
‖φn‖4

4 = 3|λ|√γz

2
√

2π
‖ρn‖2

2, (3.23)

the left argument proceeds similarly as those in 2D from (3.14). �
Remark 3.1. For the 2D DDI, one open question concerns the plausible fact that (iii)(C) in Theorem 3.1 maybe hold for 
∀ �0 > 0. The proof presented here does not seem to be directly applicable for this conjecture.

Remark 3.2. It might be interesting to understand the existence/non-existence and the uniqueness of the ground states for 
the more general FNLSE

i∂tψ =
[

1

2
(−∇2 + m2)s + 1

2
γ 2

r |x|p + β|ψ |q + λ� − �Lz

]
ψ, (3.24)

where the constants β and λ can be positive or negative and the powers p and q are real-valued positive constants. We 
leave it as an open problem for some future studies.

3.2. Numerical method

For a constant time step �t , we introduce the discrete times tn = n�t for n = 0, 1, 2, . . . The gradient flow with discrete 
normalization (GFDN) method reads as

∂tφ(x, t) = −
[

1

2
(−∇2 + m2)s + V (x) + β|φ|2 + λ�(x, t) − �Lz

]
φ(x, t), (3.25)

�(x, t) =
(
U ∗ |φ|2

)
(x, t), x ∈Rd, tn ≤ t < tn+1, (3.26)

φ(x, tn+1) = φ(x, t−
n+1)

‖φ(x, t−
n+1)‖2

, x ∈Rd, n ≥ 0, (3.27)

with the initial data

φ(x,0) = φ0(x), x ∈Rd, with ‖φ0‖2 = 1. (3.28)

Let φn(x) and �n(x) be the approximations of φ(x, tn) and �(x, tn), respectively. The above GFDN is usually discretized in 
time via the semi-implicit backward Euler method [4,13,16,60]

φ(1)(x) − φn(x)

�t
= −

[
1

2
(−∇2 + m2)s + V (x) + β|φn|2 + λ�n(x) − �Lz

]
φ(1)(x), (3.29)

�n(x) =
(
U ∗ |φn|2

)
(x), x ∈Rd, (3.30)

φn+1(x) = φ(1)(x)

‖φ(1)(x)‖2
, x ∈Rd, n ≥ 0. (3.31)

The ground states decay exponentially fast due to the trapping potential. Therefore, in practical computations, we first 
truncate the whole space to a bounded rectangular domain and impose periodic boundary conditions. Then, we discretize 
the equation (3.29) via the Fourier pseudo-spectral method in space and evaluate the nonlocal interaction �n(x) by the 
GauSum solver. The full discretized scheme of system (3.29)–(3.31) can then be solved by a fixed-point iteration or a 
preconditioned Krylov subspace solver with a similar preconditioner as those in [4]. Let us define the operators

ABE,n := I

�t
+ 1

2
(−∇2 + m2)s + V (x) + β|φn|2 + λ�n(x) − �Lz, (3.32)

P BE
� =

[
I

�t
+ 1

2
(−∇2 + m2)s

]−1

, ABE,n
TF = V (x) + β|φn|2 + λ�n(x) − �Lz, (3.33)

P BE,n
TF =

[
I

�t
+ V (x) + β|φn|2 + λ�n(x)

]−1

, ABE,n
�,� = 1

2
(−∇2 + m2)s − �Lz. (3.34)

Moreover, we denote by I, ABE,n, PBE
� , ABE,n

TF , PBE,n
TF , ABE,n

�,� the discretized versions of the above operators, and by φ(1) and 
φn the discretization of φ(1) and φn through the Fourier pseudo-spectral approximation. Then, the finite-dimensional linear 
system corresponding to (3.29)–(3.31) reads as

ABE,nφ(1) = bn := φn/�t. (3.35)

Two preconditioned versions of the linear system are the following
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Fig. 1. Slice plots of φg (x,0) for Cases I–IV (from left to right) for subdispersion s ≤ 1 (top row) and superdispersion s ≥ 1 (bottom) in Example 3.1.(
I+ PBE

� A
BE,n
TF

)
φ(1) = PBE

� bn, or
(
I+ P

BE,n
TF A

BE,n
�,�

)
φ(1) = P

BE,n
TF bn. (3.36)

We refer the reader to [4] for more details and omit them here for brevity. Like in the standard case [4,7], the most efficient 
solver uses the first preconditioned system (left) in (3.36) based on PBE

� . In particular, the acceleration of the convergence 
of the Krylov subspace solver (BiCGStab) is visible when �, β and λ are large. In practice, we use this preconditioned solver 
in subsection 3.3.

3.3. Numerical results

In this subsection, we report some numerical results concerning the ground states of (1.1)–(1.2) computed by the GF-
GauSum solver. To this end, unless stated, we fix m = 0 and d = 2. The computational domain, mesh sizes and time step are 
respectively chosen as B = [−32, 32] ×[−32, 32], hx = hy = 1

8 and �t = 10−3. The trapping potential V (x) is chosen as (1.4)
with γx = γy = 1. The nonlocal interaction is of Coulomb-type with μ = 1. The initial guess φ0(x) is chosen as

φ0(x) = (1 − �)φho(x) + �φv
ho(x)

‖(1 − �)φho(x) + �φv
ho(x)‖ , with φho(x) = 1√

π
e− |x|2

2 , φv
ho(x) = x + iy√

π
e− |x|2

2 , x ∈ B. (3.37)

The ground state φg(x) is reached when the stopping criterion holds: ‖φn(x) − φn+1(x)‖∞ ≤ ε0 �t . In the computations, we 
choose the accuracy parameter ε0 = 10−9.

Example 3.1 (Non-rotating FNLSE). Here, we impose � = 0. We study the ground states of the following four cases:

• Case I. Linear case, i.e. β = λ = 0.
• Case II. Purely long-range interaction, i.e. β = 0 and λ = 10.
• Case III. Purely short-range interaction, i.e. β = 10 and λ = 0.
• Case IV. Both long-range and short-range interactions, i.e. λ = β = 10.

Fig. 1 shows the slice plots of the ground states along the x-axis, i.e. φg (x, 0), for different fractional orders s of the 
FNLSE.

Example 3.2 (Non-rotating FNLSE with harmonic + optical lattice potential). Here, we choose � = 0. We consider the ground 
states of the FNLSE in a harmonic plus optical lattice potential with different parameters. To this end, we let λ = 64 and 
β = 0 and choose the potential as

V (x, y) = x2 + y2

2
+ 10

(
sin2(πx) + sin2(π y)

)
.
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Fig. 2. Contour plots of the density of the ground state φg (x, y) and the slice plot of φg (x, y = 0) in Example 3.2.

Fig. 3. Critical rotating frequency vs. the fractional order s in Example 3.3.

The spatial mesh sizes are chosen as hx = hy = 1
32 in this case. Fig. 2 shows the contour plot of the ground state density 

ρg := |φg(x)|2 and the slice plot of φg(x, 0) with different fractional orders s.
From Figs. 1–2 and additional results not shown here, we can conclude that (i) The ground states become more peaked 

and narrower as the fractional order s tends smaller, which corresponds to subdispersion. (ii) A large fractional order helps 
in smoothing out the density profile (cf. Fig. 2) for the superdispersion case. (iii) The repulsive local/nonlocal interactions 
suppress the “focus” or “homogenization” effect as the dispersive order s tends smaller or larger. In other words, the repul-
sive nonlinear interaction helps to stabilize the ground states. (iv) When β and/or λ are/is large, the nonlinear interaction 
dominates and the dispersive effect can be neglected.

Example 3.3 (Rotating FGPE). In this example, we present the ground states of the rotating FGPE with only local nonlinear 
interaction, i.e. λ = 0. We fix β = 100.

We propose to numerically study the dependence of the first critical rotating velocity �c to create a vortex with respect 
to the fractional order s. Fig. 3 shows this relation derived by a linear regression

�c(s) ≈ −0.02634 s2 + 0.19393 s + 0.21071. (3.38)

Fig. 4 displays the contour plots of the ground state density ρg =: |φg |2 for different � but with s = 1.2 (superdispersion), 
while Fig. 5 shows those for different s but with � = 1.35.
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Fig. 4. Contour plots of the density |φg (x)|2 in Example 3.3: s = 1.2 (superdispersion) is fixed and � varies.

Fig. 5. Contour plots of the density |φg (x)|2 in Example 3.3: � = 1.35 is fixed and s varies.

From Figs. 3–5 and additional results not shown here, we can conclude that (i) The first critical rotating velocity �c

depends almost linearly on s. (ii) For the superdispersion case, i.e. s > 1, the ground states exist for all velocities �. As 
� increases, the ground states will undergo three phase transitions (similar to the non-fractional GPE with quartic order 
trapping potential), i.e., from Gaussian-type to one-vortex profile, from vortex lattice to vortex-lattice with a hole at the 
center and then to a giant vortex. (iii) For fixed �, the vortex lattice pattern depends crucially on s. As s changes, the 
ground states will undergo similar phase transitions as in the case where s is fixed and � varies. It would be interesting 
to study how these critical rotating frequencies for the transitions depend on s and � as well as how they compare with 
those in the case of the standard GPE.
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4. Dynamics computation: properties, numerical scheme and simulations

In this section, we first present analogous dynamical laws for some commonly used quantities in the classical rotating 
GPE. Then, we extend the rotating Lagrangian coordinates transform [14] to the FGPE. In the rotating Lagrangian coordinates, 
the rotation term vanishes, giving rise to a time-dependent potential. Based on the new FNLSE, we propose a time-splitting 
Fourier pseudo-spectral method incorporated with the GauSum solver to simulate the dynamics.

4.1. Dynamical properties

Here we study the dynamical properties of the mass, energy, angular momentum expectation and center of mass [14]. 
The dynamical laws can be used as benchmarks to test the numerical methods and are briefly listed here. For details, one 
can either refer to appendices or to [55] for analogous proofs to their non-fractional counterparts.
Mass and energy. The FNLSE (1.1)–(1.2) conserves the mass (1.6) and the energy (1.7), i.e.

N (t) = N (t = 0), E(t) = E(t = 0). (4.1)

Proof. It is straightforward to prove in a similar way as their non-fractional counterparts [55] by using the Plancherel’s 
formula. �
Angular momentum expectation. The angular momentum expectation is defined as

〈Lz〉(t) =
∫
Rd

ψ̄(x, t)Lzψ(x, t)dx, t ≥ 0. (4.2)

Lemma 4.1. The angular momentum expectation 〈Lz〉(t) satisfies the following equation

d

dt
〈Lz〉(t) =

∫
Rd

|ψ |2(y∂x − x∂y)
(

V (x) + λ�(x, t)
)
dx. (4.3)

This implies that the angular momentum expectation is conserved, i.e.

〈Lz〉(t) = 〈Lz〉(0), t ≥ 0, (4.4)

when V (x) is radially/cylindrically symmetric in 2D/3D and one of the following conditions holds: (i) λ = 0, (ii) λ 
= 0, �(x) is the 
Coulomb potential or (iii) λ 
= 0, �(x) is the dipole potential with dipole axis parallel to the z-axis, i.e. n = (0, 0, ±1)T .

Proof. Details of the proof are given in Appendix A. �
Center of mass. The center of mass is defined by

xc(t) =
∫
Rd

x |ψ(x, t)|2dx = 〈xψ,ψ〉. (4.5)

Lemma 4.2. The center of mass xc(t) satisfies the following equations, for 0 < s ≤ 1 (subdispersion),

ẋc − � Jxc = i
〈
G ∗ ψ,∇ψ

〉
, (4.6)

ẍc − 2� J ẋc + �2 J 2xc = 2Re
(〈

G ∗ (Vψ),∇ψ
〉)

. (4.7)

Here, we set V(x, |ψ |) = V (x) + β|ψ |2 + λ�(x, t), and

J =
(

0 1
−1 0

)
, for d = 2, J =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , for d = 3. (4.8)

The convolution kernel G(x) reads as

G(x) =
⎧⎨⎩

δ(x), s = 1,

2s−d/2s
�(1−s) πd/2

(
m
|x|

) d
2 +s−1

K d
2 +s−1

(
m|x|

)
, 0 < s < 1,

(4.9)

where δ(x) is the Dirac delta function and K v(z), the modified Bessel function of the second-kind and order v, is given explicitly as 
follows
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K v(z) = (2z)v�(v + 1
2 )√

π

∞∫
0

cos(t)

(t2 + z2)v+ 1
2

dt. (4.10)

Proof. A detailed proof is reported in Appendix B. �
Remark 4.1. If s = 1, V (x) is the harmonic potential (1.4) and �(x) is the Coulomb potential or DDI with n = (0, 0, 1)T , then 
(4.7) reduces to [14,44]

ẍc − 2� J ẋc + (�2 J 2 + �d)xc = 0, (4.11)

where

�d =
(

γ 2
x 0

0 γ 2
y

)
, for d = 2, �d =

(
�2 0
0 γ 2

z

)
, for d = 3. (4.12)

In [44], the authors derived a dynamical law for the center of mass for the FNLSE with s ∈ ( 1
2 , 1] and a harmonic trap-

ping potential. Compared with their results, the dynamical laws (4.6)–(4.7) are simpler and hold for a general potential 
V (x) as well as for the full subdispersion case, i.e. ∀ s ∈ (0, 1]. It is also interesting to explore similar equations for the 
superdispersion case s > 1.

Remark 4.2. We also remark here that it might be interesting to derive the dynamical laws for the condensate width δv

which is defined as

δv(t) =
∫
Rd

v2|ψ(x)|2dx, v = x, y in 2D and v = x, y, z in 3D. (4.13)

The derivation and proof are feasible but tedious. One can refer to [55] for the analogous details.

4.2. Numerical method

In this subsection, we first introduce a coordinates transformation and reformulate the rotating FGPE (1.1)–(1.2) in the 
new coordinates, eliminating hence the rotation term.

4.2.1. Rotating Lagrangian coordinates transformation
For any time t ≥ 0, let A(t) be the orthogonal rotational matrix defined as [14]

A(t) =
(

cos(�t) sin(�t)
− sin(�t) cos(�t)

)
, if d = 2, A(t) =

⎛⎝ cos(�t) sin(�t) 0
− sin(�t) cos(�t) 0

0 0 1

⎞⎠ , if d = 3. (4.14)

It is easy to check that A−1(t) = AT (t) for any t ≥ 0 and A(0) = I , where I is the identity matrix. For any t ≥ 0, we introduce 
the rotating Lagrangian coordinates x̃ as [8,14]

x̃ = A−1(t)x = AT (t)x ⇔ x = A(t )̃x, x ∈Rd, (4.15)

and we denote by φ := φ( ̃x, t) the wave function in the new coordinates

φ( x̃, t) := ψ(x, t) = ψ (A(t )̃x, t) , x ∈Rd, t ≥ 0. (4.16)

By some simple calculations, one can easily obtain

∂tφ( x̃, t) = ∂tψ(x, t) + ∇ψ(x, t) · ( Ȧ(t )̃x
) = ∂tψ(x, t) − �(x∂y − y∂x)ψ(x, t), (4.17)

(−∇2 + m2)sψ(x, t) = (−∇2 + m2)sφ( x̃, t). (4.18)

Plugging them back into (1.1)–(1.2) gives the following FNLSE in the rotating Lagrangian coordinates

i∂tφ( x̃, t) =
[

1

2
(−∇2 + m2)s +W( x̃, t) + β|φ|2 + λ�̃( x̃, t)

]
φ( x̃, t), x̃ ∈Rd, t > 0, (4.19)

�̃( x̃, t) = Ũ ∗ |φ|2, x̃ ∈Rd, t ≥ 0. (4.20)

Here, W( ̃x, t) = V (A(t )̃x) and Ũ( ̃x, t) reads as
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Ũ( x̃, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2d−1π |̃x|μ , 0 < μ < d − 1, Coulomb,

−δ( x̃) − 3 ∂m(t)m(t)

(
1

4π |̃x|
)

, 3D DDI,

− 3
2

(
∂m⊥(t)m⊥(t) − m2

3∇2⊥
)( 1

2π |̃x|
)

, 2D DDI,

(4.21)

with m(t) ∈ R3 defined as m(t) = A−1(t)n =: ((m1(t), m2(t), m3(t)
)T

and m⊥(t) = (
m1(t), m2(t)

)T
.

We can clearly see that the rotation term vanishes in the new coordinates (see (4.19)). Instead, the trapping potential 
and the dipole axis become time-dependent. The absence of the rotating term allows us to develop a simple and efficient 
time-splitting scheme.

4.2.2. A time-splitting pseudo-spectral method
Here we shall consider the new equation (4.19)–(4.20). In a practical computation, we first truncate the problem into a 

bounded computational domain B = [Lx̃, Rx̃] × [L ỹ, R ỹ] × [Lz̃, Rz̃] if d = 3, or B = [Lx̃, Rx̃] × [L ỹ, R ỹ] if d = 2. From t = tn to 
t = tn+1 := tn + �t , the equation is solved in two steps. One first considers

i∂tφ( x̃, t) =
[
W (̃x, t) + β|φ|2 + λ�̃(̃x, t)

]
φ( x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.22)

�̃( x̃, t) = (
Ũ ∗ ρ̃

)
( x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.23)

for a time step �t , then solves

i∂tφ( x̃, t) = 1

2
(−∇2 + m2)sφ( x̃, t), x̃ ∈ B, tn ≤ t ≤ tn+1, (4.24)

with periodic boundary conditions on the boundary ∂B for the same time step. Here, ρ̃( ̃x, t) = |φ( ̃x, t)|2 if x̃ ∈ B and 
ρ̃( ̃x, t) = 0 otherwise. The linear subproblem (4.24) is discretized in space by the Fourier pseudo-spectral method and 
integrated in time exactly in the phase space. The nonlinear subproblem (4.22)–(4.23) preserves the density pointwise, i.e. 
|φ( ̃x, t)|2 ≡ |φ( ̃x, t = tn)|2 = |φn( ̃x)|2, and it can be integrated exactly as

φ( x̃, t) = exp
{
−i

[
(t − tn)β|φn( x̃)|2 + λϕ(̃x, t) + P ( x̃, t)

]}
, x̃ ∈ B, tn ≤ t ≤ tn+1, (4.25)

ϕ( x̃, t) =
∫
Rd

K̃( x̃ − ỹ, t)ρ( ỹ, tn)d̃y, (4.26)

where the time-dependent kernel K̃(̃x, t) has the form

K̃( x̃, t) =
t∫

tn

Ũ( x̃, τ )dτ =

⎧⎪⎪⎨⎪⎪⎩
(t − tn)/(2d−1π |̃x|μ), Coloumb,

−δ( x̃)(t − tn) − 3̃L3(t)(
1

4π |̃x| ), 3D DDI,

− 3
2 L̃2(t)(

1
2π |̃x| ), 2D DDI.

(4.27)

Here, the differential operators L̃3(t) =
∫ t

tn
∂m(τ )m(τ )dτ and L̃2(t) =

∫ t
tn

(
∂m⊥(τ )m⊥(τ ) − m2

3∇2⊥
)

dτ can be actually integrated 
analytically and have some explicit expressions. One can refer to section 4.1 in [14] for more details. The GauSum solver is 
then applied to evaluate the nonlocal nonlinear interaction ϕ (̃x, t) (4.26). In addition, we have

P ( x̃, t) =
t∫

tn

W( x̃, τ )dτ =
t∫

tn

V (A(τ )̃x)dτ . (4.28)

If V (x) is chosen as the harmonic potential (1.4), then P ( ̃x, t) can be calculated analytically. For a general potential, a 
numerical quadrature can be used to approximate the integral (4.28).

To simplify the notations, we only present the scheme for the 2D case. Let L and M be two even positive integers. We 
choose h̃x = Rx̃−Lx̃

L and hỹ = R ỹ−L ỹ
M as the spatial mesh sizes in the ̃x- and ỹ-directions, respectively. We define the indices 

and grid points sets as

TLM =
{
(�,m) ∈N2 |0 ≤ � ≤ L, 0 ≤ m ≤ M

}
,

T̃LM =
{
(p,q) ∈N2 | − L/2 ≤ p ≤ L/2 − 1, −M/2 ≤ q ≤ M/2 − 1

}
,

G̃x̃y = {
( x̃�, ỹm) =: (Lx + �hx, L y + m hy), (�,m) ∈ TLM

}
.

We introduce the following functions

W pq( x̃, ỹ) = eiμx̃
p( x̃−L̃x) eiμ ỹ

q ( ỹ−L ỹ), (p,q) ∈ T̃LM,
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Table 1
Spatial errors (upper parts) eh, �t0

ψ (t) and temporal errors (lower parts) eh0, �t
ψ (t) at t = 0.4 for the dynamics of the 2D FGPE with λ = 0 and different 

fractional order s.

eh, �t0
ψ (t) h = 3/4 h/2 h/4 h/8 h/16

s = 0.6 1.46 6.93E–1 6.19E–2 4.40E–4 6.29E–8

s = 0.9 1.36 3.05E–1 1.98E–2 7.45E–6 1.55E–11

s = 1.2 8.33E–1 3.66E–2 1.19E–5 1.04E–7 5.61E–9

eh0, �t
ψ (t) �t = 0.02 �t/2 �t/4 �t/8 �t/16

s = 0.6 6.58E–3 1.63E–3 4.08E–4 1.02E–4 2.53E–5

s = 0.9 4.76E–3 1.18E–3 2.93E–4 7.31E–5 1.82E–5

s = 1.2 7.85E–3 1.85E–3 4.56E–4 1.14E–4 2.83E–5

with

μx̃
p = 2π p

Rx̃ − Lx̃
, μ

ỹ
q = 2πq

R ỹ − L ỹ
, (p,q) ∈ T̃LM.

Let f n
�m ( f = φ, ϕ or P ) be the approximation of f ( ̃x�, ̃ym, tn) for (�, m) ∈ TLM and n ≥ 0. We denote by φn the solu-

tion at time t = tn , with components {φn
�m, (�, m) ∈ TLM}. We take the initial data as φ0

�m = φ0( ̃x�, ̃ym), for (�, m) ∈ TLM . 
A second-order time-splitting Fourier pseudo-spectral (TSFP) method to solve (4.19)–(4.20) is given by

φ
(1)
�m =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

e
− i�t

4

[
(μx̃

p)2+(μ
ỹ
q )2+m2

]s

(̂φn)pq W pq( x̃�, ỹm), (4.29)

φ
(2)
�m = φ

(1)
�m exp

{
−i

[
�tβ|φ(1)

�m |2 + λϕn+1
�m + Pn+1

�m

]}
, (4.30)

φn+1
�m =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

e
− i�t

4

[
(μx̃

p)2+(μ
ỹ
q )2+m2

]s
̂
(φ(2))pq W pq( x̃�, ỹm). (4.31)

Here, (̂φn)pq and ̂(φ(2))pq are the discrete Fourier series coefficients of the vectors φn and φ(2) , respectively. This method is 
referred to as TS2-GauSum. The TS2-GauSum method (4.29)–(4.31) is explicit, efficient, simple to implement, unconditionally 
stable and can be easily extended to high-order time-splitting schemes.

4.3. Numerical results

4.3.1. Accuracy test
In this subsection, we test the accuracy of the method TS2-GauSum (4.29)–(4.31). To this end, we consider the 2D rotating 

FGPE with harmonic potential (1.4) and DDI. The parameters are chosen as d = 2, β = 100, � = 0.5 and γx = γy = 1. The 
dipole axis is n = (1, 0, 0)T , while the initial data ψ0(x) and computational domain B are respectively given by

ψ0(x) = 21/4

√
π

e− 2x2+y2

2 , x ∈ B = [−12,12] × [−12,12]. (4.32)

To demonstrate the results, we denote ψn
h, �t as the numerical approximation of ψ(x, t = tn) obtained by the TS2-GauSum

(4.29)–(4.31) with mesh size hx = hy = h and time step �t . We take the reference (“exact”) solution ψ(x, t = tn) as its 
numerical approximation obtained with very fine mesh sizes, i.e., ψn

h0, �t0
with h0 = 3

128 and �t = 0.0001. The error function 
is defined as follows

eh, �t
ψ (tn) := ‖ψn

h0, �t0
− ψn

h, �t‖l2

‖ψn
h0, �t0

‖l2
, n ≥ 0, (4.33)

where ‖ · ‖l2 denotes the discrete l2-norm. Table 1 shows the error functions for the FGPE with λ = 0 and different s, while 
Table 2 reports those for the FGPE with s = 1.2 and different λ at time t = 0.4. From Tables 1–2, we can clearly see the 
TS2-GauSum method is spectral-order accurate in space and second-order accurate in time.

4.3.2. Dynamics simulation
In this subsection, we present some numerical results for the dynamics of the FNLSE/FGPE solved by TS2-GauSum. To this 

end, unless stated otherwise, we let m = 0, d = 2 and choose the computational domain as B = [−16, 16] × [−16, 16]. The 
mesh sizes in space and time are chosen as hx = hy = 1 and �t = 10−3, respectively. The trapping potential V (x) is chosen 
8
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Table 2
Spatial errors (upper parts) eh, �t0

ψ (t) and temporal errors (lower parts) eh0, �t
ψ (t) at t = 0.4 for the dynamics of the 2D FGPE with s = 1.2 and different 

strength of DDI λ.

eh, �t0
ψ (t) h = 3/4 h/2 h/4 h/8 h/16

λ = 1 1.10 1.00E–1 2.13E–4 3.59E–9 1.65E–10

λ = 5 1.26 1.24E–1 5.49E–4 1.03E–8 4.57E–10

λ = 10 1.38 1.54E–1 1.27E–3 2.84E–8 1.17E–9

eh0, �t
ψ (t) �t = 0.02 �t/2 �t/4 �t/8 �t/16

λ = 1 6.51E–3 1.56E–3 3.88E–4 9.66E–5 2.40E–5

λ = 5 8.08E–3 1.84E–3 4.55E–4 1.13E–4 2.82E–5

λ = 10 1.33E–2 2.24E–3 5.46E–4 1.36E–4 3.38E–5

Fig. 6. Time evolution of the energies, center of mass and condensate width in Example 4.1 for case I for: (a) s = 1 (standard case), (b) s = 0.95 (subdisper-
sion case) and (c) s = 1.5 (superdispersion case).

as (1.4) with γx = γy = 1. The nonlocal interaction is chosen as Coulomb-type with μ = 1 for Examples 4.1 and 4.2, while it 
is taken as DDI for Example 4.3. The initial data is set to

ψ0(x) = φ
s0
g (x − x0) eiv0(0.8x+0.5y), (4.34)

where φs0
g is the ground state of the FNLSE with the fractional order s0 and other parameters specified in those correspond-

ing examples below. Starting from the ground state φs0
g (x), we shift it by x0 ∈ R2 and/or imprint an initial momentum as 

shown above.
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Fig. 7. Time evolution of the energies, center of mass and condensate width in Example 4.1 for case II for: (a) s = 0.5 (subdispersion case), (b) s = 1.1
(superdispersion case).

Example 4.1 (Dynamics of the FNLSE). (x0 = (0, 0)T ). In this example, let β = � = 0, λ = −1, v0 = 1 and x0 = (0, 0)T in (4.34). 
We study two cases in (4.34): Case I: s0 = 1, Case II: s0 = s.

Figs. 6 and 7 show the dynamics of mass, energy, center of mass, condensate widths of the FNLSE with different fractional 
orders s. We can observe that (i) The mass and total energy are well conserved. (ii) The fractional order significantly 
affects the dynamics of the FNLSE. As we know, for the classical NLSE (s = 1), the density profile retains its initial shape, 
meanwhile swings periodically in the harmonic trap (cf. Fig. 6 (a)). However, for the fractional case (s 
= 1), the density 
profile is quite different from the initial profile. For the subdispersion case, s < 1, the decoherence emerges, i.e. the loss of 
solitary profile, and it becomes stronger when |s −1| is larger. For superdispersion, i.e. s > 1, there is much less decoherence 
observed. The density profile would exhibit damped oscillations around what appears to be a rescaled ground state, which 
behaves similarly as the breather solutions of the classical NLSE. (iii) For both cases, the decoherence is weak and turbulence 
(the high frequencies) does not emerge, letting alone the chaotic dynamics. The turbulence and/or chaotic dynamics might 
emerge if the initially imprinted momentum is large enough.

Example 4.2 (Dynamics of the FNLSE with position shifts in initial data). Let � = 0. With fixed s = s0 = 0.75 (subdispersion) and 
v0 = 0 in (4.34), we study the following four cases:

• Case I. Linear fractional Schrödinger equation. Let β = λ = 0, x0 = (1, 1)T .
• Case II. Linear fractional Schrödinger equation. Let β = λ = 0, x0 = (3, 3)T .
• Case III. FNLSE with purely short-range interaction. Let β = 50, λ = 0, x0 = (3, 3)T .
• Case IV. FNLSE with purely long-range interaction. Let β = 0, λ = 10, x0 = (3, 3)T .

Fig. 8 shows the dynamics of the mass, energy, center of mass, condensate widths, while Fig. 9 shows the contour plot of 
the density |ψ(x, t)|2 at different times. Similarly to Example 4.1, we can see that (i) For the FNLSE, the density profile no 
longer retains its initial shape as in the classical NLSE. The density profile also oscillates around the center of the trap and 
decoherence emerges. (ii) The dynamics of the wave function depends crucially on the initial shift x0. If the initial shift is 
small, the initial shape is changed slightly, i.e. the decoherence is small (cf. Fig. 9 (a)), while for large shifts, the decoherence 
appears very quickly. Turbulence and chaotic dynamics might also occur for a large x0 in the linear FSE (cf. Fig. 9 (b)). (iii) 
Both the short- and long-range nonlinear interactions can reduce and/or delay the emergence of decoherence and suppress 
the wave function from chaotic dynamics. Turbulence emerges in the FNLSE with pure local nonlinearity (see Fig. 9 (c)), 
while the decoherence is weaker in the FNLSE with pure nonlocal nonlinearity. The density profile would actually oscillate 
like a breather (cf. Fig. 9 (d)). It would also be interesting to investigate the decoherence and turbulence properties in the 
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Fig. 8. Time evolution of the energies, center of mass and condensate width in Example 4.2 for cases I to IV (from top to bottom). Here, we consider a 
subdispersion case for s = s0 = 0.75.

superdispersion case s > 1 and analyze how they are affected through a rotation effect. This will be considered in future 
research. Our results are in accordance with those reported in [44].

Example 4.3 (Dynamics of the vortex lattice). In (4.34), choose v0 = 0 and φs0
g as the ground state of the FNLSE with parame-

ters s = s0 = 1.2, � = 1.35, β = 100 and λ = 0. The contour plot of |ψ s0
g |2 is shown in Fig. 4 (first one in third row). With 

this initial data, we carry out the following five cases:

• Case I. Perturb the trapping frequency in both x− and y− directions: γx = γy = 1.5.
• Case II. Perturb the fractional order to a subdispersion one: s = 0.7.
• Case III. Perturb the fractional order to a superdispersion one: s = 1.5.
• Case IV. Turn on the dipole interaction by setting λ = 80 with dipole axis n = (1, 0, 0).
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Fig. 9. Contour plots of the density |ψ(x, t)|2 at different times in Example 4.2 for cases I to IV (from top to bottom). Here, we consider s0 = 0.75
(subdispersion).

Fig. 10 depicts the contour plot of the density |ψ(x, t)|2 at different times. Form this example and other additional 
numerical results, we can see that: (i) In an isotropic trapping potential, i.e. γx = γy , the lattices rotate around the origin 
and keep the similar symmetry and pattern as the initial one. In addition, the lattices also undergo a breather-like dynamics 
(cf. Fig. 10 (a)). While if γx 
= γy , symmetry breaking of the lattices would show up and the lattices rotate to form a different 
pattern. The number of vortices is conserved in both situation. (ii) While the fractional order is perturbed, breather-like 
behavior of the lattices appears. Meanwhile, decoherence/turbulence emerges if the fractional order is perturbed too much 
and the vortex structure is destroyed (cf. Fig. 10 (b) & (c)). (iii) While the DDI is present, the lattices pattern changes during 
the dynamics. The lattices rotate and redistribute according to the dipole axis.

5. Conclusion

In this paper, we proposed efficient and robust numerical methods for computing the ground states and dynamics of the 
FNLSE equation with an angular momentum and nonlocal interaction potentials. Existence and non-existence of the ground 
states were presented and dynamical laws for the mass, energy, angular momentum and center of mass were obtained.

We then studied the ground states and dynamics of the FNLSE numerically. It was found that the fractional order s
affects both the ground states and dynamics in a significant way. The ground states become more peaked as s < 1 tends 
smaller, corresponding here to subdispersion. For the superdispersion case, i.e. s > 1, the creation of a giant vortex can 
be observed for a fast rotating system, which is totally different from the behavior of the classical GPE. Critical values of 
the rotating frequencies to create the first vortex solution are numerically found to be dependent on s. The vortex lattice 
pattern depends on both s and �. For the dynamics, decoherence as well as turbulence were observed when an initial data 
is prepared from a ground state with imprinted phase shift and/or position shift. It is shown that the smaller the fractional 
order s is, the easier the decoherence emerges. The larger the initial shift is, the easier the turbulence and chaotic dynamics 
arise. Furthermore, the presence of repulsive nonlinearities, both local and nonlocal, can suppress the “peaking” effects of 
the ground states and the decoherence/turbulence observed in the dynamics.

It is worthwhile to remark that the ground states of the FNLSE decay only algebraically as |x| → ∞ when the external 
potential V (x) is bounded [33] and β < 0. A very large computational domain is necessary for both the ground state 
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Fig. 10. Contour plots of the density |ψ(x, t)|2 at different times in Example 4.3 for cases I to IV (from top to bottom).

computation and the dynamics [45]. It would be interesting and crucial to derive a fractional version of the free boundary 
conditions such as the transient BC, absorbing BC and also the PML [2] for the FNLSE.

Finally, let us emphasize that the time and space fractional NLSE, for 0 < γ < 1,

i∂γ
t ψ(x, t) =

[
1

2

(
−∇2 + m2

)s + V (x) + β|ψ(x, t)|2 + λ�(x, t) − �Lz

]
ψ(x, t), (5.35)

�(x, t) = U ∗ |ψ(x, t)|2, x ∈Rd, t > 0, d ≥ 2 (5.36)

is also very interesting for some applications [29,47,50,59]. The next step of our work would consist in analyzing efficient 
and accurate numerical methods for solving FNLSEs both in space and time and understand their behavior and properties.
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Appendix A. Proof of Lemma 4.1

Let us introduce k = (
k1, k2, k3

)T
if d = 3, and k = (

k1, k2
)T

if d = 2. Let J z = y∂x − x∂y and Ĵ z = k2∂k1 − k1∂k2 . Then, we 
have Ĵ zψ = Ĵ z ψ̂ . Differentiating (4.2), noticing (1.1) and using the Plancherel’s formula, we have

d

dt
〈Lz〉(t) = 〈Lzψt,ψ〉 + 〈Lzψ,ψt〉 = −〈iψt, J zψ〉 − 〈 J zψ, iψt〉

= 1

(2π)d

{
−〈 1

2

(|k|2 + m2)s
ψ̂ + V̂ψ, Ĵ zψ̂ 〉 − 〈 Ĵ zψ̂,

1

2

(|k|2 + m2)s
ψ̂ + V̂ψ 〉

}
, (A.1)

with Vψ := V ψ + λ� ψ . The rotation and local nonlinear terms cancel. We omit both for brevity.



X. Antoine et al. / Journal of Computational Physics 325 (2016) 74–97 95
By integrating the above equation by parts, we have

d

dt
〈Lz〉(t) = 1

(2π)d

{
−〈 1

2

(|k|2 + m2)s
ψ̂ + V̂ψ, Ĵ zψ̂ 〉 + 〈 ψ̂, Ĵ z

(
1

2

(|k|2 + m2)s
ψ̂ + V̂ψ

)
〉
}

= 1

(2π)d

{〈 ψ̂, Ĵ z(V̂ψ) 〉 − 〈 V̂ψ, Ĵ zψ̂ 〉} = 1

(2π)d

{−〈 Ĵ zψ̂, V̂ψ 〉 − 〈 V̂ψ, Ĵ zψ̂ 〉}
= −〈 J zψ,Vψ 〉 − 〈Vψ, J zψ 〉 = 〈 |ψ |2, J zV 〉 =

∫
Rd

|ψ |2(y∂x − x∂y)
(

V (x) + λ�(x, t)
)

dx. (A.2)

Therefore, by adapting the polar/cylindrical coordinates transformation in 2D/3D and noticing y∂x − x∂y = −∂θ , one can 
obtain

I1 =:
∫
Rd

|ψ |2(y∂x − x∂y)V (x)dx = 0, (A.3)

provide that V (x) is radially/cylindrically symmetric in 2D/3D. Now that

I2 =:
∫
Rd

|ψ |2(y∂x − x∂y)�(x, t)dx = 1

(2π)d
〈|̂ψ |2, Ĵ z�̂〉 =

∫
Rd

Û(k)|̂ψ |2(k2∂k1 − k1∂k2)|̂ψ |2dk, (A.4)

applying the polar/cylindrical coordinates transformation in 2D/3D in the Fourier space, it is easily to get I2 = 0 if Û(k) in 
(1.5) is chosen as the Coulomb-type interaction or DDI with n = (0, 0, 1)T . �

Appendix B. Proof of Lemma 4.2

Step 1: By differentiating (4.5) and noticing (1.1), we have

ẋc(t) = d

dt
〈xψ,ψ〉 = 1

i
〈x iψt,ψ〉 + i〈xψ, iψt〉 = i [〈xψ, iψt〉 − 〈x iψt,ψ〉]

= i

2

[
〈xψ, (−� + m2)sψ〉 − 〈x (−� + m2)sψ,ψ〉

]
− � [〈x J zψ,ψ〉 + 〈ψ,x J zψ〉] . (B.1)

An integration by parts and an application of Plancherel’s formula lead to

ẋc(t) = i

2

1

(2π)d

{
〈i∇kψ̂, (|k|2 + m2)sψ̂〉 − 〈i∇k[(|k|2 + m2)sψ̂(k)], ψ̂〉

}
+ �〈ψ J zx,ψ〉

= s

(2π)d
〈(|k|2 + m2)s−1kψ̂, ψ̂〉 + � J xc . (B.2)

Note that (B.2) is well-defined for ∀ s > 0. If s = 1, (B.2) yields

ẋc(t) − � Jxc = 1

(2π)d
〈k ψ̂, ψ̂〉 = i〈ψ,∇ψ〉 = i〈G ∗ ψ,∇ψ〉, (B.3)

with G(x) = δ(x). If 0 < s < 1, we have(
|k|2 + m2

)s−1 = 1

cs

∞∫
0

λ−se−π(|k|2+m2)λdλ, with cs = �
(
1 − s

)
/π1−s. (B.4)

Hence, one gets

sF−1
((|k|2 + m2)s−1

ψ̂
)

= s
1

(2π)d

∫
Rd

(
|k|2 + m2

)s−1
ψ̂ eik·xdk

= s

cs

∞∫
0

λ−s e−πλm2

⎡⎢⎣ 1

(2π)d

∫
Rd

ψ̂ e−πλ|k|2 eik·x dk

⎤⎥⎦dλ = s

cs

∞∫
0

λ−s e−πλm2
[
ψ ∗F−1

(
e−πλ|k|2)]dλ

= s

cs(2π)d

∞∫
0

λ−s e−πλm2
∫
Rd

λ− d
2 e− |x−y|2

4πλ ψ(y)dydλ

= s

cs(2π)d

∫
d

ψ(y)

⎡⎣ ∞∫
λ− 2s+d

2 e−πλm2
e− |x−y|2

4πλ dλ

⎤⎦dy =:
(

G ∗ ψ
)
(x), (B.5)
R 0
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with

G(x) = s

cs(2π)d

∞∫
0

λ− 2s+d
2 e−πλm2

e− |x|2
4πλ dλ = 2s−d/2s

�
(
1 − s

)
πd/2

(
m

|x|
) d

2 +s−1

K d
2 +s−1

(
m|x|

)
, (B.6)

where K v(z) is the modified Bessel function of the second-kind and order v defined by (4.10). Finally, we obtain

ẋc(t) − � Jxc = s

(2π)d
〈(|k|2 + m2)s−1kψ̂, ψ̂ 〉 =

〈
sF−1(|k|2 + m2)s−1ψ̂

)
,F−1(kψ̂

)〉 = i
〈
(G ∗ ψ),∇ψ

〉
. (B.7)

Step 2: Let us consider the second-order derivative of (B.2). By (B.5), we have

ẍc(t) − � J ẋc = 2s Re
(

Cd〈k(|k|2 + m2)s−1ψ̂t, ψ̂ 〉
)

= 2s Im
(

Cd〈 iψ̂t,k(|k|2 + m2)s−1ψ̂ 〉
)

= 2 Im
(

Cd〈sF−1
(
(|k|2 + m2)s−1V̂ψ

)
, F−1(kψ̂

) 〉
)

+ s �
[

Cd〈 ψ̂,k(|k|2 + m2)s−1 Ĵ zψ̂ 〉
+Cd〈 ψ̂, ψ̂ Ĵ z

(
k(|k|2 + m2)s−1) 〉 − Cd〈k(|k|2 + m2)s−1ψ̂, Ĵ zψ̂ 〉

]
= 2 Re

(〈
G ∗ (Vψ),∇ψ

〉) + s � Cd〈 (|k|2 + m2)s−1ψ̂, ψ̂ Ĵ zk 〉
= 2 Re

(〈
G ∗ (Vψ),∇ψ

〉) + � J
(
ẋc − � Jxc

)
.

Hence, we obtain

ẍc(t) − 2� J ẋc + �2 J 2xc = 2 Re
(〈

G ∗ (Vψ),∇ψ〉
)
, (B.8)

ending hence the proof. �
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