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Abstract. We propose efficient and accurate numerical methods for computing the
ground state and dynamics of the dipolar Bose-Einstein condensates utilising a
newly developed dipole-dipole interaction (DDI) solver that is implemented with the
non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-
dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the
corresponding two-dimensional (2D) model under a strongly anisotropic confining
potential. Different from existing methods, the NUFFT based DDI solver removes the
singularity by adopting the spherical/polar coordinates in the Fourier space in 3D/2D,
respectively, thus it can achieve spectral accuracy in space and simultaneously main-
tain high efficiency by making full use of FFT and NUFFT whenever it is necessary
and/or needed. Then, we incorporate this solver into existing successful methods for
computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Exten-
sive numerical comparisons with existing methods are carried out for computing the
DD, ground states and dynamics of the dipolar BEC. Numerical results show that our
new methods outperform existing methods in terms of both accuracy and efficiency.
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1 Introduction

Since its first experimental creation in 1995 [4, 20, 23], the Bose-Einstein condensation
(BEC) has provided an incredible glimpse into the macroscopic quantum world and
opened a new era in atomic and molecular physics as well as condensated matter physics.
It regains vast interests and has been extensively studied both experimentally and theo-
retically [3,17,19,24,36,40,44]. At early stage, experiments mainly realize BECs of ultra-
cold atomic gases whose properties are mainly governed by the isotropic and short-range
interatomic interactions [44]. However, recent experimental developments on Feshbach
resonances [33], on cooling and trapping molecules [41,47] and on precision measure-
ments and control [45, 49] allow one to realize BECs of quantum gases with different,
richer interactions and gain even more interesting properties. In particular, the successful
realization of BECs of dipolar quantum gases with long-range and anisotropic dipolar in-
teraction, e.g., 52Cr [26], 164Dy [38] and '°®Er [2], has spurred great interests in the unique
properties of degenerate dipolar quantum gases and stimulated enthusiasm in studying
both the ground state [7, 8,30,46,50] and dynamics [13,14,22,28,35,43] of dipolar BECs.

At temperatures T much smaller than the critical temperature T, the properties of
BEC with long-range dipole-dipole interactions (DDI) are well described by the macro-
scopic complex-valued wave function i = ¢(x,t) whose evolution is governed by the
celebrating three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term.
Moreover, the 3D GPE can be reduced to an effective two-dimensional (2D) version if
the external trapping potential is strongly confined in the z-direction [8,21]. In a unified
way, the dimensionless GPE with a DDI term in d-dimensions (d =2 or 3) for modeling a
dipolar BEC reads as [6,7,14,25,35,50]:

01 (x,t) = —%V2+V(x)+ﬁ]¢|2+)»q9(x,t) w(xt), xeR? t>0, (11)

D(x,t) = (Ugip*|]*) (x,1), xeR?, t>0, (12)
P(x,t=0)=1p(x), xERY, (1.3)

where t is time, x= (x,y)T €R2or x= (x,y,z)T €R3, % represents the convolution operator
with respect to spatial variable. The dimensionless constant 8 describes the strength of
the short-range two-body interactions in a condensate (positive for repulsive interaction,
and resp. negative for attractive interaction), while V(x) is a given real-valued external
trapping potential which is determined by the type of system under investigation. In
most BEC experiments, a harmonic potential is chosen to trap the condensate, i.e.,

— (1.4)
2| vt rgytaiet, d=3,

V(x)=

where v, >0, 7, >0 and 1y, > 0 are dimensionless constants proportional to the trapping
frequencies in x-, y- and z-direction, respectively. Moreover, A is a dimensionless constant
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characterizing the strength of DDI and ®(x,t) is the long-range dipole interaction whose
convolution kernel in 3D/2D is given as [6, 8, 14,21,29]:
3(n-k)?

—0(x) —30nn % ’ — 1+ d=3,
Udip(x){ ( n|X|>

<~ adip(k): k)2 —n2 (k)2
_%(anﬂu_ngvi) (#I)(I)' 2l 2)\k\ . ‘]/ d=2,

(1.5)

where x,k € R? and f(k) = Jraf(x) e~ *dx is the Fourier transform of f(x). Here, n=
(n1,m2,m3)7 is a given unit vector representing the dipole axis, n| = (n1,12)7, 9, =n"V,
Inn=0n(0n), V= (0x,0y),0n, =n -V and 9 n, =0n, (On, ).

The GPE (1.1)-(1.3) conserves two important quantities: the mass (or normalization) of
the wave function

N(t)::Hlp(.,t)H2::/Rd|lp(x,t)|2dxz/]Rd|1p(x,0)]2dx:1, £>0, (1.6)

and the energy per particle

EGC0)= [, [5IV0EHV O+ B+ o0 9| ax=E(w(.0), 120 07)

The ground state ¢, of the GPE (1.1)-(1.3) is defined as follows:

pe=argminE(), where S:={p(x) | gl:= [ IpG0Pdx=1, E(g)<eo}. (19

Extensive works have been carried out to study the ground state and dynamics of dipolar
BEC based on the GPE (1.1)-(1.3). For existing theoretical and numerical studies, we refer
to [7,17,21,22,31,32,34,35] and [5,12,13, 18, 25,28, 32,35, 48], respectively, and references
therein.

To compute the ground state and dynamics of the GPE (1.1), one of the key difficulties
is how to evaluate the nonlocal dipole interaction ®(x,t) (1.2) accurately and effectively
for a given density p = |¢|>. Noticing that

1 ~ =N e
@(xt)= [ Uiy (x—y)p(y Dy = g5 [ ap(0pllo )k, (19)

it is natural to evaluate ®(x,t) via the standard fast Fourier transform (FFT) using a uni-
form grid on a bounded computational domain [18,42,43,48]. Nevertheless, due to the
intrinsic singularity /discontinuity of Udip(k) at the origin k=0, the so called “numerical
locking” phenomena occurs, which limits the optimal accuracy on any given computa-
tional domain [7,51]. To alleviate this problem, another approach [8,21] is to reformulate
the convolution (1.2) with 3D dipole kernel (1.5) in terms of the Poisson equation:

—Au(x,t)=|p(x,t)?, lim u(x,t)=0, x€R3 >0, (1.10)

|x|—00
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and convolution (1.2) with 2D dipole kernel (1.5) in terms of the fractional Position equa-
tion
V=Au(xt)=|p(xt) lim u(x,t)=0, x€R? t>0. (1.11)

|x|—o0

Then, the dipolar potential ®(x,t) can be computed by a differentiation of u(x,t) as:

—[p(xt)[*—30mnu(xt), x€R?,
D(x,t)= {

—3(0n,n, —13V2)u(x,t), xeR?,

£>0. (1.12)

Then in practical computations, the sine pseudospectral method is applied to solve (1.10)-
(1.12) on a truncated rectangular domain () with homogeneous Dirichlet boundary con-
ditions imposed on d(), and they can be implemented with discrete sine transform (DST)
efficiently and accurately [8]. By waiving the use of the 0-mode in the Fourier space,
the sine spectral method significantly improves the accuracy for the dipole interaction
evaluation. However, due to the polynomial decaying property of u(x,t) when |x| — oo,
a very large computational domain is required in order to achieve satisfactory accuracy.
This will increase the computational cost and storage significantly for the dipole interac-
tion evaluation and hence for computing the ground state and dynamics of the GPE (1.1).
Moreover, we shall also remark here that, in most applications, a much smaller domain
suffices the GPE (1.1) simulation because of the exponential decay property of the wave
function (x,t).

Recently, an accurate and fast algorithm based on the NUFFT algorithm was proposed
for the evaluation of the dipole interaction in 3D /2D [29]. The method also evaluates the
dipole interaction in the Fourier domain, i.e., via the integral (1.9). Unlike the standard
FFT method, by an adoption of spherical/polar coordinates in the Fourier domain in
3D/2D, the singularity /discontinuity of Udip(k) at the origin in the integral (1.9) is can-
celed out by the Jacobian introduced by the coordinates transformation. The integral is
then discretized by a high-order quadrature and the resulted discrete summation is ac-
celerated via the NUFFT algorithm. The algorithm has O(NlogN) complexity with N
being the total number of unknowns in the physical space and achieves very high accu-
racy for the dipole interaction evaluation. The main objectives of this paper are threefold:
(i) to compare numerically the newly developed NUFFT based method with the existing
methods that are based on DST for the evaluation of these nonlocal interactions in terms
of the size of the computational domain () and the mesh size of partitioning (); (ii) to pro-
pose efficient and accurate numerical methods for the ground state computation and dy-
namics simulation of the GPE with the nonlocal interactions (1.1)-(1.2) by incorporating
the NUFFT based nonlocal interaction evaluation algorithm into the normalized gradi-
ent flow method and the time-splitting Fourier pseudospectral method, respectively, and
(iii) to test the performance of the methods and apply them to compute some interesting
phenomena of the dynamics of dipolar BEC.

The paper is organized as follows. In Section 2, we shall briefly review the NUFFT
based algorithm in [29] for the evaluation of the dipole interaction in 3D/2D. In Section
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3, an efficient and accurate numerical method will be proposed to compute the ground
state of the GPE (1.1)-(1.2) by coupling the NUFFT based algorithm for the evaluation of
the dipole interaction and the discrete normalized gradient flow method. In Section 4,
we will present an efficient and accurate numerical method for computing the dynamics
of the GPE (1.1)-(1.2) by coupling the NUFFT based algorithm for the evaluation of the
dipole interaction and the time-splitting Fourier pseudospectral method. Finally, some
concluding remarks will be drawn in Section 5.

2 Evaluation of the dipole interaction via NUFFT

In this section, we will first briefly review the NUFFT based method in [29] for computing
the dipole interaction in 3D/2D, and then compare this method with the existing DST-
based method. Here, we consider the DDI (1.9) with a more general dipole interaction
kernel lldip(x) defined with two different dipole orientations n and m as [27,29,37,42]

Uaip(x) = { ~(n-m)3(x) ~3%m (#\X\) ’

_% (aanL —1’13}7’13Vi) (ﬁ) P

) R
& Ugip(k) = 1) (m s k) — (2.1)
P 3[(n,1)( le((\) 3 3|k|2], d=2.

Here, x,k € R? with d =3,2, n = (n1,n2,n3)T and m = (my,my,m3)T are two given unit
vectors representing the two dipole orientations, m; = (ml,mz)T, Om, =m -V and
On,m, =0n, (Om, ). This general DDI interaction kernel (2.1) arises in several areas such
as quantum chemistry [27, 37] and spinor dipolar BEC [17,31]. When the two dipole
orientations are polarized at the same direction, i.e., m=n, Eq. (2.1) collapses to (1.5).

2.1 NUFFT based algorithm

Due to the external trapping potential, the solution of the GPE (1.1)-(1.3) will decay ex-
ponentially. Thus, without loss of generality, it is reasonable to assume that the den-
sity p(x,t) is smooth and decays rapidly, hence p(k,t) is also smooth and decays fast.
Therefore, up to any prescribed precision ¢ (e.g., €o =10712), we can respectively choose
bounded domains D and Bg(0)=:{|k|<R,k&R*} large enough in the physical space and
phase space such that the truncation error of p(x,t) and p(k,t) is negligible. Note that the
convolution only acts on the spatial variable, to simplify our presentation, hereafter we
omit the temporal variable t and simplify the notation as ®(x,t) —®(x) and p(x,t) —p(x).

By truncating the integration domain in (1.9) into a Bg(0) and adopting the spheri-
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cal/polar coordinates in 3D/2D in the phase (or Fourier) space, we have [29]

1 KXy ~ 1 KXy ~
)= (54 L. Uy (0P () K~ / Ui (000

R ik-x 75 ~
1 o 02713 ) [k |Ugip (k) p(k)d|k|dep, d=2, 02

d N .
(27T) fOR fOTE fomelk'xudip(k) ]kIZSiHGﬁ(k)d|k|d9d¢, d=3.

It is easy to see that the singularity /discontinuity of ﬁdip(k) at the origin is canceled out
by the Jacobian |k|?~! and hence the integrand in the above integral is smooth. The in-
tegrals in (2.2) can be discretized with high order accuracy by using standard (shifted
and scaled) Gauss-Legendre quadrature in the radial direction (and the longitudinal 6
direction in 3D), combined with the trapezoidal rule for the azimuthal ¢ variable [29].
The computational cost of this algorithm is O(NjlogN;)+O(N,), where Nj is the total
number of equispaced points in the physical space D and N, is the number of nonequis-
paced points in the phase space Br(0). Roughly speaking, N, is of the same order as Nj,
however, the constant in front of O(N,) (e.g., 24 for 12-digit accuracy) is much greater
than the constant in front of O(NjlogNj ). This makes the algorithm considerably slower
than the regular FFT, especially for three dimensional problems.

To reduce the computational cost, an improved algorithm is also proposed in [29].
First, by a simple partition of unity, the integral in (2.2) can be further split into two parts:

1 P
)~ / ¢ U ()P ()
R
_ X (1~ g,(k)) Ugio p(K) dke —/ kX (k) Ui p(K) dK
ot o (0000 Q)b [ %000 UK
1 ik-x ~ 1 ik-x iy ~
~ (27r)d/nek pd(k)P(k)dk+(2n)d/)9 (O)Ek 94 (k) Ugip (K)p (k) dk
R
=L+L,  xeD. (2.3)

Here, Q= {k = (ky,--- ,k;)T ‘ |kj| <R, 1=1,---,d} is a rectangular domain containing the
ball Br(0), the function g, (k) is chosen such that it is a C* function which decays expo-
nentially fast as | k| —co and the function p;(k):=(1—g,4(k)) ﬁdip(k) is smooth for k€ IR?.
With this g4(k), I; can be evaluated via the regular FFT, while I can be computed via the
NUFFT with a fixed (much fewer) number of irregular points in the phase (or Fourier)
space (see Fig. 1). Therefore, the interpolation cost in the NUFFT is reduced to O(1) and
the overall cost of the algorithm is comparable to that of the regular FFT, with a small
oversampling factor in front of O(N;logNy).

2.2 Numerical comparison

In this subsection, we will show the accuracy and efficiency of the NUFFT based algo-
rithm (referred as NUFFT) for computing dipole interaction ®(x) and compare them with
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Figure 1: Two grids used in the phase (or Fourier) domain in the improved algorithm in [29]: the regular grid
on the left panel is used to compute I; in (2.3) via the regular FFT; while the polar grid (confined in a small
region centered at the origin) on the right panel is used to compute I in (2.3) via the NUFFT. Note that the
number of points in the polar grid is O(1), thus keeping the interpolation cost in NUFFT minimal.

the existing methods that applies (1.10)-(1.12) via the DST (referred as DST). To this end,
we denote D as the computational domain, Dy, as its partition with mesh size h and @, (x)
as the numerical solution obtained on the domain Dj,. Hereafter, we choose h, =h, =h,
in 3D and/or hy =h, in 2D and denote them uniformly as & unless stated otherwise. To
demonstrate the comparison, we define the error function as

en:= || D= Pyl /|| P2, (2.4)
where || - |2 is the [>-norm.
Example 2.1. Dipole-dipole interaction in 3D.

In this example, we take d=3 and choose the source density p(x)=e~ X/ with o> 0.
The DDI (1.9) in 3D with two dipole orientations n and m in (2.1) can be given explicitly
as

o? nErf(r/U)> = —(n-m)p(x)—-3n"G(x)m, (2.5

cIJ(x):—(n.m)p(x)—38nm< 1 o

where the matrix G(x) = (gj (x))}?”l:1 is given as

oz 2 ooy r 302 2 1 _2 30« r

. S s, S - . ) _YY T2 _
g (x) (21’26 473 Erf<a>>5]l+x]x1< 24 ¢ RV Erf(a))’
2.6)

with §; the Kronecker delta, x = (x1,x2,43)T and Erf(r) = ﬁ fore_szds the error func-

tion. We choose 0 =1.4 and compute the potential ®(x) on a uniform mesh grid, i.e.,
hy =hy =h. on the domain [—L,L]*> by the DST and NUFFT methods. Table 1 shows
the numerical errors e;, via the DST and NUFFT methods with different dipole axis,
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Table 1: Errors of the 3D dipole interaction with different dipole axis for different & and L.

NUFFT h=2 h=1 h=1/2 h=1/4
L=4 6.004E-01 6.122E-03 1.362E-04 9.823E-05
L=8 6.344E-01 b5.739E-03 1.189E-09 6.323E-14

L=16 6.641E-01 6.054E-03 1.162E-09 1.188E-13

DST h=1 h=1/2 h=1/4 h=1/8
L=8 1.985E-01 2.022E-01 2.038E-01 2.046E-01
L=16 7.135E-02 7.172E-02 7.200E-02 7.214E-02
L=32 2622E-02 2544E-02 2.549E-02 2.552E-02

Table 2: Errors for the 3D dipole interaction with the same dipole axis for different & and L.

NUFFT h=2 h=1 h=1/2 h=1/4
L=4 1.118E-01 3.454E-04 1.335E-04 1.029E-04
L=8 b5.281E-02 3.428E-04 9.834E-12 1.601E-14

L=16 5202E-02 3.551E-04 1.143E-11 8.089E-15

DST h=1 h=1/2 h=1/4 h=1/8
L=8 6919E-02 7.720E-02 8.124E-02 8.327E-02
L=16 2709E-02 2.853E-02 2.925E-02 2.961E-02
L=32 1.008E-02 1.033E-02 1.046E-02 1.052E-02

i.e., n=(0.82778,0.41505,—0.37751)" and m = (0.31180,0.93780,—0.15214)T, while Table 2
presents errors e, with the same dipole axis, i.e., n=m= (0,0,1)T.

From Tables 1-2, we can clearly observe that: (i) The errors are saturated in the DST
method as the mesh size /1 tends smaller and the saturated accuracy decreases linearly
with respect to the domain size L; (ii) The NUFFT method is spectrally accurate and it
essentially does not depend on the domain, which implies that a very large bounded
computational domain is not necessary in practical computations.

Example 2.2. Dipole-dipole interaction in 2D.

Here, we take d =2 and choose the source density as p(x) = e~ X/ with o> 0. The
exact DDI (1.9) in 2D with two dipole orientations n | and m in (2.1) can be given as [29]:

@00 =2V om ) (0(r) ()~ 2 (1

o2

_1—2kr27’11(r)>} +M[10(7’)_11(7’)_102—(:)]1 (2.7)

where r = %, Ip and I; are the modified Bessel functions of order 0 and 1, respectively

[1]. Here, we choose ¢ =+/1.3 and dipole axis as n| = (O,—0.896)T, n3 =0.44404, m | =
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Table 3: Errors of the 2D dipole interaction by different methods with # on [—L,L]?.

NUFFT h=2 h=1 h=1/2 h=1/4
L=4 1196 6.444E-01 5.251E-06 7.343E-06
L=8 1.279 1.611E-02 4.039E-07 4.720E-14

L=16 3.289E-01 1.631E-02 4.226E-08 3.489E-14
DST h=2 h=1 h=1/2 h=1/4

L=8 3.200E-01 1.944E-02 1.145E-02 1.208E-02
L=16 3.264E-01 1.660E-02 2.971E-03 3.048E-03
L=32 3281E-01 1.636E-02 7.590E-04 7.686E-04

(0,—0.52476)" and m3 = 0.85125. Table 3 shows the errors e, via the DST and NUFFT
methods for different domain size L and mesh size h.

From Table 3, we can clearly observe that: (i) The errors are saturated in the DST
method as the mesh size h tends smaller and the saturated accuracy decreases linearly
with respect to the domain size L; (ii) The NUFFT method is spectrally accurate and it
essentially does not depend on the domain if it is adequately large.

Example 2.3. Dipole-dipole interaction for anisotropic densities.

In this example, we consider the dipole-dipole interaction for anisotropic densities
which are localized in one or two spatial directions. As stated in the introduction, the
3D/2D dipole interaction (1.12) can be solved analytically via the Poisson equation (1.10)
and the fractional Poisson equation (1.11) in 3D and 2D, respectively. Therefore, the
dipole-dipole interaction can be obtained analytically via the solution of the Poisson/

fractional Poisson potential, followed by differentiation.
x2 2
The 2D case. For an anisotropic density p(x,y) = ﬁeiTUy? with a small parameter
0<e<1, the 2D Coulomb potential (1.11) is given analytically [16] as:

2 2
1 P~ ~ i)

ooG x,1,8)ds, G(x,y,8)=
s lo ClowNs Gl == s

Then, the DDI (1.9) in 2D with (2.1) can be obtained by differentiating the integrand G in
(2.8). For the convenience of readers, it can be evaluated explicitly as:

u(x,y) = )

3 [ee]
<I>(x,y)=—4n—3/2/0 ((n1my—n3m3)Gax+ (nama —nzms) Gyy+ (n1ma+namy ) Gyy ) ds. (2.9)

Similarly as [16], to numerically evaluate (2.9), we first split it into two integrals and
reformulate the one with infinite interval into an equivalent integral with finite interval
by a change of variable. Then, we apply high order Gauss-Kronrod quadrature to each
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Table 4: Errors of the 2D dipole interaction for anisotropic densities solved on D, and D for the NUFFT and
DST methods, respectively, with 7, =1/8.
NUFFT ¢=1 e=1/2 e=1/4 e=1/8 e=1/16
L=8 3.456E-07 4.167E-07 3.984E-07 3.207E-07 2.864E-07
L=16 1.005E-12 7.531E-15 5.119E-15 4.108E-15 3.720E-15
L=32 2241E-12 6.856E-15 4.913E-15 4.072E-15 3.855E-15

DST e=1 e=1/2 e=1/4 e=1/8 e=1/16

L=8 4.014E-02 3.182E-02 1.711E-02 6.276E-03 2.181E-03
L=16 9.604E-03 7.534E-03 4.035E-03 1.479E-03 5.137E-04
L=32 2386E-03 1.868E-03 9.995E-04 3.661E-04 1.272E-04

integral to get reference solutions. Here we omit details for brevity. With this way, we
can obtain the ‘exact’ 2D DDI with the given density p(x,y).

As discussed in [16], the 2D Coulomb interaction can be well-resolved by the NUFFT
method on a heterogenous rectangle D.=[—L,L] x [—¢L,eL]. The DST method, best suited
for solving the PDEs with homogeneous Dirichlet boundary condition on a rectangular
domain, fails to produce even a satisfactory result on D,, mainly because the potential
does not decay fast enough. Actually, the DST method can give reasonably accurate re-
sults on a square D=|—L,L]? due to that the homogeneous Dirichlet boundary condition
doesn’t bring significant error, however, one needs to resolve the anisotropic density with
h, = ¢eh,. Then the computational and storage costs for the DST method will correspond-
ingly scale linearly as a function of 1/¢. Here we adapt the similar strategy for the choice
of computational domains for the NUFFT and DST methods to compute the DDI. Table
4 presents errors of the 2D dipole interaction for anisotropic densities by NUFFT on D,
and DST on D with h, =1/8,h, = ¢eh, for the same n,m as in the Example 2.2.

As for the 3D case, there are two typical kinds of anisotropic densities, that is, densi-
ties that are strongly localized in one or two directions. The first typical kind of anisotropic

density is localized in one direction. For example, choose the density as p(x,y,z) =

242 2
Sﬂ\lﬁee*' ¢ 12, and its corresponding 3D Coulomb potential (1.10) is given as:

1 [e) _IZIWZ - Zz\2 1
u(x,y,Z) = 87‘(—3/2/0 e Hisle 46+ed) — (s, (2.10)

(14s)vVs+e?

The second kind of anisotropic density is localized in two directions. For example, the
_2at 2
density is taken as p(x,1,z) = me «> e~ 7, and the corresponding 3D Coulomb po-

tential (1.10) is given analytically as:

2+ yz 22 1

,z)=——ro * At At s,
u(x,y,z) 87t3/2/0 e e T ) s

(2.11)
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Table 5: Errors of the 3D dipole interaction (2.10) by NUFFT on D¢ and DST on D with hy =h,=1/4 and
n=m=(0,0,1)T in (2.1).

NUFFT =1 e=1/2 e=1/4 e=1/8 e=1/16
L=8 3.004E-08 2.581E-08 2.307E-08 1.988E-08 1.578E-08
L=16 1.598E-14 7.590E-15 4.590E-15 2.184E-15 1.193E-15

DST e=1 e=1/2 e=1/4 e=1/8 e=1/16
L=8 1.409E-01 7.667E-02 4.308E-02 2.633E-02 1.716E-02
L=16 5.003E-02 2.754E-02 1.548E-02 9.453E-03 6.159E-03
L=32 1.786E-02 9.836E-03 5.522E-03 3.370E-03 2.195E-03

Similarly as in the 2D case, the DDI in 3D can be obtained by differentiating the integrand
in (2.10) and (2.11). They can be evaluated numerically in a similar way, which can be
viewed as the ‘exact’” solution. For brevity, we omit the formulas and relevant details.

To numerically compute the 3D dipole interaction by the NUFFT and DST methods,
we shall adopt the meshing strategy, i.e., h, =h, and h, =¢h, for densities localized only
in z-direction and h, = h, = ¢h, for densities localized in x,y directions. Similarly, the
NUFFT method is applied on a heterogenous cube D =[—L,L]> x [—eL,eL] or [—eL,eL]? x
[—L,L]. The DST method is used on D = [—L,L]® so that the homogeneous Dirichlet
boundary condition doesn’t bring significant error. Correspondingly, the computational
and storage costs of the DST method will scale linearly as a function of 1/& (the first kind)
or 1/ (the second kind).

To show the accuracy performance of both methods, we take the first kind density as
the test function (2.10). Here we take the same dipole axis n=m = (0,0,1)T in (2.1) for
simplicity. Table 5 presents errors of the 3D dipole interaction for anisotropic densities
localized in the z-direction by NUFFT on D, and DST on D with hy=h,=1/4 and h,=¢h,.

From Tables 4-5, we can conclude: (1) the NUFFT can evaluate accurately the 2D and
3D dipole interaction with anisotropic densities. (2) The DST method can still capture
satisfactory results if the computational domain is large enough, however, the computa-
tional and storage costs increase when the heterogeneity of the density increases, which
makes it less applicable, especially in 3D simulation.

3 Ground state computation

In this section, we propose an efficient and accurate numerical method for computing
the ground state by combining the normalized gradient flow which is discretized by the
backward Euler Fourier pseudospectral method and the NUFFT nonlocal DDI solver.
We shall refer to this new method as GF-NUFFT hereafter. The spatial spectral accuracy
is investigated in details, the virial identity is verified numerically, with comparison to
some existing results in [8], to show the advantage of the GF-NUFFT method in term of
accuracy.
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3.1 A numerical method via the NUFFT

Let At > 0 be the time step and denote t, = nAt for n=0,1,2,---. Many efficient and
accurate numerical methods have been proposed for computing the ground state of the
GPE [8-10,51]. One of the most simple and successful method is by solving the following
gradient flow with discretized normalization (GFDN):

B (x,t) = %Vz—V(x)—ﬁ|<p|2—)\qD(x,t) o), XERY, b<t<tii, (1)

D(x,t) = (Ugip*||*) (x,1), XERY, t,<t<t,.i, (3.2)
(rb(xlt;-H) d
P(Xtni1) = xeR?, n>0, (3.3)
T ol )

with the initial data
o(x,0)=¢o(x), xeR?,  with H(pon::/Rd](po(x)]zdx:l. (3.4)

Let ¢"(x) and ®"(x) be the numerical approximations of ¢(x,t,) and ®(x,t,), respec-
tively, for n > 0. The above GFDN is usually discretized in time via the backward Euler
method [8,51]

) _an
000" g2y - plg P20 ()| g, xeR, 65)
D" (x) = (Ugip*|9"*) (), x€R?, (3.6)
(1)
(P”“(X):HZmﬁ, x€R?, n>0. (37)

As is known, the ground state decays exponentially fast due to the trapping potential,
therefore, in practical computations, we shall first truncate the whole space to a bounded
domain D and impose periodic boundary conditions. It is worthwhile to point out
that the dipole interaction is originally defined by convolution, therefore it does not
require any boundary condition. Then, the equation (3.5) is discretized in space via
the Fourier pseudospectral method and the dipole interaction ®"(x) in (3.6) is evalu-
ated by the NUFFT solver. The initial guess ¢o(x) is usually chosen as a positive func-
tion, e.g., a Gaussian, and the ground state ¢, (x) is obtained numerically as ¢"(x) once
—H‘Pn(x)fgﬂ(x)“lw < is satisfied, where ¢y is the desired accuracy. The details are omitted
here for brevity.
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3.2 Numerical results

In order to study the spatial accuracy of the GF-NUFFT method for computing the ground
state, we denote @ (x) = (Ugip *|¢¢|*) (x) and introduce the error functions

o 0 -gx(Ille 1900 - D (e
B lgg (e R CHEOI e

where 4)2 and @(’; are obtained numerically by a numerical method with the mesh size h.
Additionally, we split the energy functional into four parts

E(¢) = Exin(9) + Epot(¢) + Eint(¢) + Eaip (),

where the kinetic energy Eiin(¢), the potential energy Epoi(¢), the interaction energy
Eint(¢), and the dipole interaction energy Egip(¢) are defined as

Bun(#)=3 [, [V0MPx Epu9)= [ VOl P, @)
Eua()=5 [ 100010 Eap(@)=7 [ @00lp(Pdx, 39)

respectively. Moreover, the chemical potential can be reformulated as p(¢) = E(¢)+
Eint(¢) +Egip(¢). Furthermore, if the external potential V(x) in (1.1) is taken as the har-
monic potential (1.4) [7,15,16,39], the energies of the ground state satisfy the following
virial identity

0= I:=2Eyin((g) — 2Epot(hg) + 3Eine () + 3Eaip (- (3.10)

We denote " as an approximation of I when ¢, and ®, are replaced by (])g and CD;
in (3.10). In our computations, the ground state 4)2 is reached numerically when

w < &g with g9 =1071. The initial data ¢(x) is chosen as a Gaussian and
the time step is taken as At =10"2. In the comparisons, the “exact” solution ¢,(x) was
obtained numerically via the GF-NUFFT method on a large enough domain () with small
enough mesh size i and the same time step At=10"2.

Accuracy confirmation. To show the accuracy of the GF-NUFFT, we take d =3,
n=(0,0,1)7, =200 and V(x) = 3 (x>+y*+2%/4). Table 6 presents errors of the ground
states and the corresponding dipole interactions computed on a fixed domain [—8,8]°
with different mesh size h and the DDI strength A. From this Table, we can observe
clearly the spectral convergence in space of the GF-NUFFT method.

Virial identity. Here we take the same physical parameters as used in [8] (cf. Table
3),ie, d=3, =207.16 and V(x) = 3 (x>+y*+2z%/4). We compute the ground state on
a larger domain, i.e., [—12,12]3, with a coarser mesh size hy =h, = h, =1/4. Different
energies of the ground state and related quantities are shown in Table 7. Compared with
Table 3 in [8] where the identity is only accurate up to 3 significant digits, our results by
the GF-NUFFT method agree quite well with the identity, up to 9 significant digits.
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Table 6: Errors of the ground states and the dipole interaction obtained by the GF-NUFFT method for n=
(0,0,1)T and B=200 with different mesh sizes  and A.

GF-NUFFT h=2 h=1 h=1/2 h=1/4 h=1/8
A=-100 | 1.783E-02 3.102E-03 3.463E-05 3.652E-09 4.133E-12
e‘Pg A= 100 1.263E-02 2.717E-03 3.599E-05 6.183E-09 2.841E-12
A= 200 1.670E-02 3.049E-03 8.897E-05 5.364E-08 3.871E-12
A=-100 | 2.810E-02 3.683E-03 1.842E-05 1.555E-09 8.132E-12
eﬁ,g A= 100 2.385E-02 4.932E-03 9.445E-05 1.996E-08 2.750E-12
A= 200 1.406E-02 5.681E-03 2.424E-04 1.921E-07 3.121E-12

Table 7: Different energies of the ground state and I" for the 3D dipolar BEC with B=207.16 for different A.

A Eg Hg Eiin Ef}ot Eig}lt Eiip Ih

—103.58 29584 39301 0.26466 1.7221 0.83892 0.13273  6.6214E-10
—51.79  2.8841 3.8187 0.27379 1.6757 0.85255 0.082056 5.7861E-10
0 2.7943 3.6830 0.28621 1.6193 0.88875 0.0000 5.0929E-10
51.79 2.6875 3.5201 0.30303 1.5519 094903 -0.11646 4.5134E-10
103.58 25593 3.3213 0.32704 14701 1.0451 -0.28304 3.6672E-10
155.37 2.3998 3.0674 0.36538 1.3668 1.2105 -0.54290 2.3288E-10

207.16 21838 27011 0.44525 1.2212 15749 -1.0576  -1.6697E-10

4 Dynamics simulation

In this section, instead of solving the GPE (1.1)-(1.3), we consider a more general GPE in
d-dimensions (d =2,3) with both the damping term and time (in-)dependent DDI:

i0p(x,t) = —%V2+V(X)+ﬁ!¢|2”+2\q>(x,t)—if(|¢!2) p(xt), (4.1)
D(xt) = (Ugip*[9*) (1), x€R?, >0, (4.2)
P(x,t=0)=1po(x). (4.3)

Here, o > 0 corresponds to the type of the nonlinearity (¢ =1 represents to the cubic
nonlinearity, and resp., © =2 to a quintic nonlinearity). f(p) >0 for p=||> >0 is a real-
valued monotonically increasing function that represents the type of damping. In BEC,
when f(p) =0, (4.1) reduces to the usual GPE (1.1) without damping effect, while a linear
damping term f(p) =0 with 6 >0 represents inelastic collisions with the background gas.
In addition, the cubic damping f(p) = d1p with 6; >0 describes two-body loss, a quintic
damping term of the form f(p) =dp* with 6, >0 corresponds to the three-body loss, and
their combination f(p) =810+ d,p? takes both the two and three-body loss into account.
Furthermore, the kernel of the dipole interaction may be time (in-)dependent, which is



W. Bao, Q. Tang and Y. Zhang / Commun. Comput. Phys., 19 (2016), pp. 1141-1166 1155

defined as

3 1-3(x-n(t))?/|x[? 1
Udip(x,f):E M =—08(x) =39 (t)n(r) )’ xeR3, t>0, (4.4)

where n(t) = (n1(t),n2(t),n3(t))T €R3 is a given time (in-)dependent unit vector, repre-
senting the dipole orientation. The energy is modified as:

. 1 2 2, B oy A 2
et)=: [, [5IVP+Vlp P+ 1 PO+ S 000 )

A

t
5, (asudip*]¢|2>|1/J(x,s)]2ds}dx, t>0, (4.5)

which satisfies the following dynamical law:

d _
FEO==2[ FpPmyagdx 1=0 (46)
where ¢ denotes the complex conjugate of i. The total mass N(t) (1.6) is dissipated as:
d 23142
- = — >0. .
GNO==2] F(yP)pPx, =0 @)

We will present an accurate and efficient numerical method for simulating the dy-
namics of the GPE (4.1)-(4.3). The method incorporates the NUFFT solver for the eval-
uation of the nonlocal dipole interaction and the time-splitting Fourier pseudospectral
discretization for the GPE (4.1).

4.1 Numerical method

In practical computation, we first truncate the problem (4.1)-(4.3) into a bounded com-
putational domain D = [L,,Ry]| x [L,,R,] x [L,R;] if d=3, or D=[Ly,Ry] x[Ly,R,] if d=2.
From t=t, to t =t,41, the GPE (4.1) will be solved in two steps. One first solves

Dpot) =5 V2P(xt), XED, ty<t<hun, (48)

with periodic boundary condition on the boundary 90D for a time step of length At, fol-
lowed by solving

0rp(xt) = [V)+Bly [+ AR ) —if ([p)[p(xt), x€D, ti<t<tin, (49
®(x,t) = (Ugip* [¥[*) (x,1), XED, ty<t<ty, (410)
for the same time step. The linear subproblem (4.8) will be discretized in space by the

Fourier pseudospectral method and integrated in time exactly in the phase space, while
the nonlinear subproblem (4.9)-(4.10) can be integrated exactly, one can refer to [8,11,13,
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14] for details. To simplify the presentation, we will only present the scheme for the 3D
case. As for the 2D case, one can modify the algorithm straightforward.

Let L, M, N be even positive integers, choose h, = R-“ZL", h,= Ry A}Ly and h, = % as
the spatial mesh sizes in x-, y-, and z- directions, respectively. Define the index and grid
points sets as

TLMN:{(lkm)yo<z<L 0<k<M,0<m<N}, (4.11)
~ L M M N N

— __< 2], - <g< T, << —— .
gxyz - {(xl/ykzzm) = (Lx+lhx/Ly+khy/Lz+m’/lz) ( ) LMN} . (4'13)

Define the functions

W;ql’(x’y"z) ey ez}lz (X—Lx) glﬂg(y_Ly) eiyf(Z_LZ), (p,q’r) 6 ﬁMN/

with ) ) 5

X _ Pt y_ qr z__ It
= Re—L MR-, T R-L
Let ¢}, be the approximation of ¢(x;,yx,zm,tx) for (I,k,m) € Tppmn and n>0 and denote
" be the solution vector at time t =t, with components {¢}; , (k,m) € Typmn }. Taking
the initial data as gb?km = o (x1,Yx,zm) for (1,k,m) € Tpmn, for n >0, a second-order time
splitting Fourier pseudospectral (TSFP) method to solve the GPE (4.1)-(4.3) reads as:

(p,9,) € TLmn-

L/2-1 M/2-1 N/2-1

1 A ()2 -
le(k%:p_Zi/zq_%m_%me Pl ](4) ) pgr Wpar (X1,Yk:Zm ),

Phion = Vi exP {7 | ALV (31,910200) - H (5 1280 + G944 ) (a2 |
xexp{—F(|p[2A0},  (Lkm) €T,

L/2-1 M/2-1 N/2-1 . —

gel= Y Y L e W @) we L G yeze).  @14)
p=—L/2g=—M/2r=—N/2

L —

Here, (1/]”)W and (1/J(2))pqr are the discrete Fourier transform coefficients of the vectors

" and %), respectively, and the functions H(¢,s), G(¢,s,51) and F(g,s) are defined as:

H(g,s) =,B/s W0 dt,  F(gs) :/sf(h(go,r))dr, (4.15)
G(g@,8,51)( /\/ (Ugip (-, T) xh(@(-, T—5)) (x)dT, (4.16)
with

_ [ g7'(8(p)=2s), >0, s>0, 1
os)={ e SOy 6w
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For a given damping function f(s), in general, g~ !(s) and thus /(¢,s) may not have
explicit expressions. In practical computation, one could solve %(¢,s) numerically from
an auxiliary ODE, and then evaluate (4.15)-(4.16) via a numerical quadrature. For details,
one can refer to Remark 2.1 in [11]. However, if the dipole axis is time independent, i.e.,
Ugip (x,1) = Ugip (x,t =0) =: Ugip(x), for those damping terms that are frequently used in
the physics literatures, the functions H, F and G can be integrated analytically. For the
convince of the reader, we list them here briefly [11]:

e Casel. f(p)=0, ie. no damping term, we have
Hgs)=Pe"s,  F(@s)=0,  Glg,ss1)(x)=A(s1—3) (Ufpxg) (x).
e Casell. f(p)=0>0, i.e., the linear damping, we have

U o
Hps) =50 (1-0%%),  Kps)=ss

Glps51)(0 = (1 279) (U #9) (0.

e Case IIL. f(p) =0Jp7 with 6,4 >0, which corresponds to two (g=1) or three (g =2)
body loss of particles, we have

F(g,s)= zl—qln(l +2q6s¢7),

H(ps)= %ln(l—l—Zqésgoq), if o=q,
’ - 7—q —0 .
% {(H—Zqésq)q)l /q—l} , if o#g,
=In(1420(s1—s)g), if g=1,

G((P/S’Sl)(x) :/\l'lglpﬂ< 142g6(s1—s) 1 1_1/’1—1 .
( qu;(;_f)‘qu),l . i g#£L

The function G is evaluated by the algorithm via the NUFFT as discussed in previous
sections, and this method for discretizing the GPE (4.1)-(4.3) is referred as TS-NUFFT.

4.2 Test of the accuracy

In this section, we first test the accuracy of our numerical method for computing the
dynamics of the dipolar BEC. To demonstrate the results, we define the following error
function

19 ota) =91 o 12
ALY = WAL >0, 418
o )= an . "2 (4.18)
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where ||-||» represents the [ norm, ¥/ ,, is the numerical approximation of (x,t =t,)
obtained by the TS-NUFFT method (4.14) with mesh size /i and time step At. In this
subsection, all examples are carried out for dipolar BEC without damping effect, i.e.,
f(p)=0in the GPE (4.1). Moreover, the computational domain D, the trapping potential
V(x) and the initial data y(x) are respectively chosen as

2
D=[-20"925""4, V(x)= % Po(x)= %e—"“z/z, x€D with d=2 or 3. (4.19)
T
Furthermore, the dipole orientation in (4.4) is chosen as n= (0,0,1)7 in 3D, n; = (1,0)7
and n3 =0in 2D, respectively.

Example 4.1. Numerical accuracy verification in 3D.

Here d=3 and the “exact” solution ¥(x,t) is obtained numerically via the TS-NUFFT

method on domain D with very small mesh size h=hg:= % and time step At=Aty:= 10~4.

Table 8 lists the spatial discretization errors efp"AtO (t) and the temporal discretization errors

e?po’At(t) as well as the convergence rate at time t = 0.28 with different mesh size h and

different time step At, for different f and A = g

Table 8: Spatial errors (upper parts) efp"Ato(t) and temporal errors (lower parts) eZ)O'At(t) at t=0.28 for the
dynamics of the 3D GPE (4.1) with different § and A= g

G0 n=1/2  h=1/4 h=1/8 h=1/16
B=2  3999E-03 1612B-05 1.601E-11 3.049E-12
B=10  1.773E-02 2.581E-04 8.899E-09 3.133E-12

B=>50 8.074E-02  8.186E-03 2.460E-05 2.304E-11

() At=0.008  At/2 At/4 At/8
B=2  2983E-06 7.454E-07 1.860E-07 4.615E-08
rate - 2.001 2.003 2.011
B=10  8.151E-06 2.036E-06 5.081E-07 1.261E-07
rate - 2.001 2.003 2.011
B=50  8.427E-05 2.105B-05 5.251E-06 1.303E-06
rate - 2.001 2.003 2.011

Example 4.2. Numerical accuracy verification in 2D.

Here d =2 and the “exact” solution §(x,f) is obtained numerically via the TS-NUFFT

method on domain D with very small mesh size h=hg:= % and time step At=Ato:=10"%.

Table 9 shows the spatial discretization errors efpl’AtO(t) and the temporal discretization
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Table 9: Spatial errors (upper parts) eiz’Ato(t) and temporal errors (lower parts) ez}“’m(t) at t=1.0 for the
dynamics of the 2D GPE (4.1) with different § and A= %.

() h=1/2  h=1/4 h=1/8 h=1/16
=2 5.715E-05 6.193E-11 1.120E-11 1.124E-11
B=10 1.894E-03 6.616E-08 1.354E-11 1.679E-11
B=50 7.265E-02 2987E-04 4.987E-10 2.852E-11
() A=001  AL/2 At/4 At/8
=2 9.011E-06 2.252E-06 5.623E-07 1.399E-07
rate - 2.001 2.002 2.007
B=10 2.293E-05 5.728E-06 1.430E-06 3.558E-07
rate - 2.001 2.002 2.007
B=50 2.453E-04 6.122E-05 1.528E-05 3.802E-06
rate - 2.003 2.002 2.007
errors ef‘;’A ‘(t) as well as the convergence rate at time = 1.0 with different mesh size h

and different time step At, for different  and A = %.

From Tables 8-9, we can see that the TS-NUFFT method (4.14) is spectrally accurate
in space and second order accurate in time for computing the dynamics of dipolar BEC.

4.3 Applications

In this section, we apply the TS-NUFFT method (4.14) to study some interesting phe-
nomena, such as the dynamics of a BEC with time-dependent dipole orientations and the
collapse and explosion of a dipolar BEC with attractive interaction and damping terms.

Example 4.3. Dynamics of a BEC with rotating dipole orientations.

Here d =3 and we consider the GPE (4.1) without damping term, i.e., f(p) =0. The
trapping potential is chosen as V (x) = % and the initial data in (4.3) is chosen as ¥y (x) =
¢gs(X), Where ¢qs(x) is the ground state of the GPE (4.1) with f(p) =0 and n=(0,0,1)7,
B =103.58 and A = 82.864, which is computed numerically via the numerical method

presented in the previous section. The computational domain and mesh size are chosen

as D=[-8,8]> and h, =h, =h, =3, respectively. Then we tune the dipole orientation as
t £\’
n(t)= smg,O,cosg , t>0, (4.20)

and study the dynamics of the BEC in two cases:
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e Case 1. tune the dipole orientation as in (4.20) and keep all the other parameters
unchanged.

e Case 2. tune the dipole orientation as in (4.20), perturb the trapping potential by
setting v, =2 and keep all the other parameters unchanged.

Fig. 2 shows the isosurface of the density function p(x,t) = |{(x,t)|*> =0.01 at different
times for case 1, while Fig. 3 depicts those for case 2. From Figs. 2-3, we could have
the following conclusions: (i). The density of the condensate will rotate along with the
rotation of the dipole axis. (ii). For Case 1 where the trapping potential is isotropic,
the shape of the density profile seems unchanged during the dynamics, and it seems to
keep the same symmetric structure with respect to the dipole orientation. However, this
phenomena does not occur in Case 2 where the trapping potential is anisotropic.

Example 4.4. Collapse and explosion of a dipolar BEC with damping effect in 3D.

In this case, the trapping potential V(x) and the constants A and f§ are set to be time
dependent and are chosen according to the parameters used in the physical experiment
[34,35] (in dimensionless form) as follows:

22422 +4222) /2, t€[0,4+thowa,
V(X,t) _ (’)/x Ty T2 ) [ hold] 4.21)
0, otherwise,
with v, =1.65, v, =1, 7, =1.325,
82.864, t€|0,5.6+t ,
A(f) = [ hold] (4.22)
0, otherwise,
28
0.3, te[3.2,3.6],
B(t)=761.1025 1— W te(3.6,4.8], (4.23)
38.8066, te [48, 5.6+ thold]/
0, otherwise,
where
1 [ —125t—25¢7°1 4215, te0,0.4],
b(t)=— (4.24)
133 | 25(1—e72)e 02254140, t€[0.4,1.2].

Here, ty,014 is the hold time for the collapse, which is chosen as t,ig =0.2. Moreover, we
let n=(0,0,1)T, o =1 and choose the damping term as f(p) = ép? with 6 =3.512, i.e.,
we choose the cubic nonlinearity and study the case of three-body loss of the particles.
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Figure 2: Isosurface plots of the density function p(x,t) =|(x,t)|>=0.01 and the dipole axis n(t) (red arrow)
at different times for case 1 in Example 4.3.
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Figure 3: Isosurface plots of the density function p(x,t)=|¢(x,t)|>=0.01 and the dipole axis n(t) (red arrow)
at different times for case 2 in Example 4.3.

The initial data in (4.3) is chosen as 1P(x) = Pgs(x), Where ¢qs(x) is the ground state of
the GPE (4.1) with f(p) =0, n=n(0), f=5(0) A=A(0) and V(x) = V(x,0), which is
computed numerically via the numerical method presented in the previous section. The
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Figure 4: Contour plots of the column density p} (y,z,t) at different times for Example 4.4.
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Figure 5: Evolution of the mass for Example 4.4.

computational domain and mesh size are chosen as D = [—24,24]3 and hy=hy,=h, = %,

respectively. Figs. 4 and 5 show the contour plot of the column density

Ry
piwzh = [ lwtot) P,

and the evolution of the total mass, respectively.

From Figs. 4 and 5, we can conclude that: (i). The total mass is lost during the dynam-
ics, especially during a very short period near t =5 (cf. Fig. 5). (ii). Although the BEC is
released from the trap (i.e., the trapping potential is turned off) at time t =4.2, the atoms
in the BEC still move inward in the x-y plane. (iii). The density is first elongated along
the dipole orientation, then the collapse of the BEC happens very quickly, and “clover”
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pattern of the density profile is created. (iv). The “Leafs” are then ejected outward. All
these results agree with those in the experiments [34, 35].

5 Conclusion

We proposed efficient and accurate numerical methods for computing the ground state
and dynamics of the dipolar Bose-Einstein condensates by integrating a newly devel-
oped dipole-dipole interaction (DDI) solver via the non-uniform fast Fourier transform
(NUFFT) algorithm [29] with existing numerical methods. The NUFFT based DDI solver
removes naturally the singularity of the DDI at the origin by adopting the spherical /polar
coordinates in the Fourier space, thus achieves spectral accuracy and simultaneously
maintains high efficiency by appropriately combining the advantages of the NUFFT
and FFT. Efficient and accurate numerical methods were then presented to compute the
ground state and dynamics of the dipolar BEC with a DDI by integrating the normalized
gradient flow with the backward Euler Fourier pseudospectral discretization and time-
splitting Fourier pseudospectral method, respectively, together with NUFFT based DDI
solver. Extensive numerical comparisons with existing methods were carried out to com-
pute the DDI, ground states and dynamics of the dipolar BEC. Numerical results showed
that our new methods outperformed other existing methods in terms of both accuracy
and efficiency, especially when the computational domain is chosen smaller and/or the
solution is anisotropic.
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