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In this paper, we propose new efficient and accurate numerical methods for computing
dark solitons and review some existing numerical methods for bright and/or dark solitons
in the nonlinear Schrödinger equation (NLSE), and compare them numerically in terms of
accuracy and efficiency. We begin with a review of dark and bright solitons of NLSE with
defocusing and focusing cubic nonlinearities, respectively. For computing dark solitons,
to overcome the nonzero and/or non-rest (or highly oscillatory) phase background at far
field, we design efficient and accurate numerical methods based on accurate and simple
artificial boundary conditions or a proper transformation to rest the highly oscillatory
phase background. Stability and conservation laws of these numerical methods are ana-
lyzed. For computing interactions between dark and bright solitons, we compare the effi-
ciency and accuracy of the above numerical methods and different existing numerical
methods for computing bright solitons of NLSE, and identify the most efficient and accurate
numerical methods for computing dark and bright solitons as well as their interactions in
NLSE. These numerical methods are applied to study numerically the stability and interac-
tions of dark and bright solitons in NLSE. Finally, they are extended to solve NLSE with gen-
eral nonlinearity and/or external potential and coupled NLSEs with vector solitons.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Solitons are those self-reinforcing solitary waves with notable stability properties that keep their shapes and velocity dur-
ing propagation. They arise in many areas of physics such as the optical fiber communications, hydrodynamics, solid state
physics, biological physics and atomic physics [1,21]. Since they were first observed and described by Russell [34], many fas-
cinating experiments and remarkable mathematical theories have been developed to describe and study their properties
[21,32]. In this paper, we consider the soliton dynamics in the nonlinear Schrödinger equation (NLSE) in one dimension
(1D) with cubic nonlinearity, which is a completely integrable system [43,44,33]:
i@twðx; tÞ ¼ �
1
2
@xxwðx; tÞ þ bjwðx; tÞj2wðx; tÞ; x 2 R; t > 0; ð1:1Þ
where t is time, x is spatial coordinate, w is a complex-valued wave function or order parameter, and b is a dimensionless
constant with positive value for defocusing (or repulsive) and negative value for focusing (or attractive) nonlinearity,
. All rights reserved.
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respectively. Among the seas of conserved quantities of this equation, the three important ones are the normalization of the
wave function
NðtÞ :¼ Nðwð�; tÞÞ ¼
Z

R

jwðx; tÞj2dx; t P 0; ð1:2Þ
the momentum
PðtÞ :¼ Pðwð�; tÞÞ ¼ i
2

Z
R

wðx; tÞ@x
�wðx; tÞ � �wðx; tÞ@xwðx; tÞ

� �
dx; t P 0; ð1:3Þ
where �w denotes the complex conjugate of w, and the energy
EðtÞ :¼ Eðwð�; tÞÞ ¼ 1
2

Z
R

j@xwðx; tÞj2 þ bjwðx; tÞj4
h i

dx; t P 0: ð1:4Þ
The NLSE (1.1) has been widely used to successfully study solitons in dispersive nonlinear optical fibers [25,26,29], and for
analyzing the properties of the matter-wave solitons [23,18,19] shortly after the realization of Bose–Einstein condensate [5].
In general, solitons are formed when the nonlinear term exactly balances the wave packet dispersion, and two different types
of solitons, i.e. bright and dark solitons when b < 0 and b > 0, respectively, have been observed in experiments and widely
studied in theories for the NLSE [43,44].

Bright solitons are of concave-shape density that can survive when the self-phase modulation balances the dispersion of
the pulse in nonlinear optics and/or in a self-focusing media for the nonlinear matter waves. When b < 0, the NLSE (1.1) ad-
mits bright solitons in the following form [43,29]:
wBðx; tÞ ¼
affiffiffiffiffiffiffi
�b
p sechðaðx� vt � x0ÞÞeiðvx�1

2ðv
2�a2Þtþh0Þ; x 2 R; t P 0: ð1:5Þ
Here affiffiffiffiffi
�b
p is the amplitude with a an arbitrary real constant, v is the velocity of the soliton, and x0 and h0 are two real con-

stants representing the shifts of the soliton in space and phase at t ¼ 0, respectively. Due to the exponential decay of the
above bright soliton solution when jxj ! 1, the conserved quantities in (1.2)–(1.4) are well defined. In fact, plugging
(1.5) into (1.2)–(1.4), when b < 0, we obtain
NðwBÞ ¼
2a
�b

; PðwBÞ ¼
2av
�b

; EðwBÞ ¼
av2

�b
þ a3

�3b
; ð1:6Þ
which immediately imply the particle-like nature of the bright soliton [19] with: effective mass as Mb ¼ 2a
�b, effective momen-

tum as Pb ¼ Mbv , effective energy as Eb ¼ 1
2 Mbv2 þ 1

24 b2M3
b ¼ 1

2Mb
P2

b þ 1
24 b2M3

b , and @Eb
@Pb
¼ Pb

Mb
¼ v .

In addition, different numerical methods have been proposed for solving the dynamics of the NLSE (1.1) with the above
bright soliton solutions and/or other related solutions which decay to zero when jxj ! 1. In this case, the original problem is
usually truncated on a bounded computational domain, e.g. an interval, with either simple boundary conditions such as
homogeneous Dirichlet [3,20], or periodic [38,42], or homogeneous Neumann [35,24] boundary conditions; or complicated
and high order boundary conditions such as transport boundary conditions [6,45,7,27]. When the bounded computational
domain is chosen large enough, the approximation is usually very accurate. Then the truncated problem is usually discret-
ized in space by either finite difference method [3,20,22,35,31,41], or spectral method [8,10,36,38], or finite element method
[46]; and in time by either the conservative Crank–Nicolson method [22], or time splitting method [17,11,42], or semi-
implicit method, or 4th-order Runge–Kutta method [3,4,28]. Based on these efficient and accurate numerical methods,
the stability and interaction of the above bright solitons have been well and widely studied analytically and numerically
as well as asymptotically in the literatures.

On the other hand, dark solitons are of convex-shape density with a non-trivial phase jump across the density minimum
that can be supported in a defocusing media. When b > 0, the NLSE (1.1) admits dark solitons. By means of inverse scattering
transform [2,29], dark solitons are in the form of [19,23,43,29]
wDðx; tÞ ¼ cos / tanh
ffiffiffiffiffiffiffiffi
u0b

p
cos /ðx� vt � x0Þ

� �
þ i sin /

h i
wbgðx; tÞ; ð1:7Þ
which are living on the nonzero background
wbgðx; tÞ ¼
ffiffiffiffiffi
u0
p

eiðkx�xtþh0Þ; x 2 R; t P 0; ð1:8Þ

where u0 > 0 is a constant, x0 and h0 are two real constants representing the shifts of the soliton in space and phase at t ¼ 0,
respectively, k and x are the wave number and frequency of the background, respectively, satisfying the dispersion relation
x ¼ 1

2 k2 þ bu0, v is the relative velocity between the soliton and the background given by v ¼
ffiffiffiffiffiffiffiffi
u0b
p

sin /þ k with / (j/j < p
2)

the so called soliton phase angle describing the darkness of the soliton, namely
jwDðx; tÞj
2 ¼ u0½1� cos2 /sech2ð

ffiffiffiffiffiffiffiffi
u0b

p
cos /ðx� vt � x0ÞÞ�; x 2 R; t P 0: ð1:9Þ
In this way, the so called black and gray solitons correspond to the cases / ¼ 0 and / – 0, respectively. Notice that there are
two independent parameters u0 and k for the background in the formula (1.8), it is naturally to divide the dark soliton solu-
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tions into two groups according to the stationary of the background. If a dark soliton lives on a rest background, i.e. k ¼ 0, we
call it as type I dark soliton; otherwise, i.e. k – 0, we name it as type II dark soliton. By introducing a ¼

ffiffiffiffiffiffiffiffi
u0b
p

cos /, the type I
dark solitons can be reformulated as
wD1ðx; tÞ ¼
1ffiffiffi
b
p ½a tanhðaðx� vt � x0ÞÞ þ iv �eið�ða2þv2Þtþh0Þ; x 2 R; t P 0; ð1:10Þ
and respectively, type II dark solitons can be reformulated as
wD2ðx; tÞ ¼
1ffiffiffi
b
p ½a tanhðaðx� vt � x0ÞÞ þ iðv � kÞ�eiðkx�1

2½k
2þ2a2þ2ðv�kÞ2 �tþh0Þ: ð1:11Þ
Due to the nonzero and/or non-rest (or highly oscillatory) phase background of the above dark soliton solutions (1.7) when
jxj ! 1, the conserved quantities in (1.2)–(1.4) are not well defined. In fact, it is easy to check that NðwDÞ ¼ 1; PðwDÞ ¼ 1
and EðwDÞ ¼ 1. Thus, for the dark soliton solutions (1.7) of the NLSE, one might need to renormalized the integrals in
(1.2)–(1.4) to exclude the contribution of the background such that the new integrals are finite and reveal the particle-like
nature of the dark solitons. For details, one can refer to [19,23,15,30,40] and references therein.

From the numerical point of view, it brings significant difficulties and numerical burden due to the appearance of nonzero
and/or non-rest (or highly oscillatory) phase background at far field in the solutions of NLSE such as the dark soliton solu-
tions (1.7). In this case, the original problem can still be truncated on a bounded computational domain. However, the simple
boundary conditions such as homogeneous Dirichlet, or periodic, or homogeneous Neumann boundary conditions; and the
complicated and high order boundary conditions such as transport boundary conditions are no longer valid. To our knowl-
edge, there is not too much work on designing and comparing efficient and accurate numerical methods for solving NLSE
with nonzero far field conditions, especially with non-rest (or highly oscillatory) phase background such as the type II dark
solitons. Due to the realization of Bose–Einstein condensation, it has been more and more demanded to study theoretically
the stability and interaction of dark solitons of NLSE [19,23,29,30,40]. The main aim of this paper is to present and compare
efficient and accurate numerical methods for solving NLSE with nonzero far field conditions such as the dark soliton solu-
tions. By designing accurate and simple artificial boundary conditions or introducing a proper transformation to rest the
highly oscillatory phase background, we design different numerical methods for computing dark solitons in NLSE and com-
pare their efficiency and accuracy as well as computational complexity. Comparison with different existing numerical meth-
ods for NLSE with solutions decay to zero when jxj ! 1, such as the bright soliton solution, will also be carried out so as to
identify the most efficient and accurate numerical methods for studying numerically the stability and interaction of dark and
bright solitons of NLSE. To solve (1.1) numerically, we assume the following initial condition
wðx;0Þ ¼ w0ðxÞ; x 2 R: ð1:12Þ
The rest of this paper is organized as follows. In Section 2, we propose numerical methods for solving NLSE with type II dark
soltions and compare them numerically. Similar results for type I dark solitons and bright solitons of NLSE are presented in
Sections 3 and 4, respectively. Extension to NLSE with general nonlinearity and/or external potential and the coupled NLSEs
with vector solitons is given in Section 5. Finally, some conclusions are drawn in Section 6.
2. Numerical methods for NLSE with type II dark solitons

In this section, we will present new efficient and accurate numerical methods for the NLSE (1.1) with (1.12) when the
solution admits type II dark soliton at far field, i.e. the solution has non-rest (or highly oscillatory) phase background at
far field. Without loss of generality, e.g. type II dark soliton, we assume that the initial data w0 satisfies
w0ðxÞ ! A0
�eikx; x! �1; ð2:1Þ
where k – 0 is a given real constant and A0
þ – A0

� are two given complex constants. Under this far field assumption on the
initial data, by using the disperison relation of the NLSE and the method of separation of variables, formally, we get the solu-
tion w of the NLSE (1.1) with (1.12) satisfies
wðx; tÞ ! A�ðtÞeikx; x! �1; t P 0: ð2:2Þ
Plugging (2.2) into (1.1), we obtain formally
iA0�ðtÞ ¼
k2

2
A�ðtÞ þ bjA�ðtÞj2A�; t > 0; ð2:3Þ
with initial condition A�ð0Þ ¼ A0
�. Multiplying (2.3) by the conjugate of A�ðtÞ and then subtracting from its conjugate, we get

for q�ðtÞ :¼ jA�ðtÞj2 as
q0�ðtÞ � 0; t > 0;
which immediately implies that
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q�ðtÞ � q�ð0Þ ¼ jA
0
�j

2
; t P 0:
Plugging it into (2.3) and solving it analytically, we get
wðx; tÞ ! A0
�e�iðk2þ2bjA0

�j
2Þt=2eikx; x! �1; t P 0: ð2:4Þ
This implies that the solution wðx; tÞ of the NLSE (1.1) with (1.12) has the same oscillatory phase background at far field in
space as that in its initial data w0ðxÞ.

2.1. Numerical methods based on accurate and simple boundary conditions

Based on the far field asymptotic behavior (2.4) of the solution w, differentiating (2.4) with respect to x, we get
@xwðx; tÞ � ikwðx; tÞ ! 0; x! �1; t P 0: ð2:5Þ
This immediately provides an accurate and simple far field condition for the solution w. In fact, by choosing an interval
X ¼ ½L1; L2� properly and large enough, the original problem (1.1) with (1.12) can be approximated by
i@twðx; tÞ ¼ �
1
2
@xxwðx; tÞ þ bjwðx; tÞj2wðx; tÞ; L1 < x < L2; t > 0; ð2:6Þ

@xwðL1; tÞ � ikwðL1; tÞ ¼ @xwðL2; tÞ � ikwðL2; tÞ ¼ 0; t > 0; ð2:7Þ

wðx;0Þ ¼ w0ðxÞ; L1 6 x 6 L2: ð2:8Þ
For the above problem, we can define the modified mass and energy as
N1ðtÞ :¼
Z L2

L1

jwðx; tÞj2dxþ k
Z t

0
ðjwðL2; sÞj2 � jwðL1; sÞj2Þds; t P 0; ð2:9Þ

E1ðtÞ :¼ 1
2

Z L2

L1

ðj@xwj2 þ bjwj4Þdxþ kIm
Z t

0
wðL2; sÞ@s

�wðL2; sÞ � wðL1; sÞ@s
�wðL1; sÞ

� �
ds; ð2:10Þ
where �f and Im (f) denote the conjugate and imaginary part of f, respectively. Then we can prove that the modified mass and
energy are conserved (see detailed proof in Appendix A):

Lemma 2.1. The truncated problem (2.6)–(2.8) conserves the modified mass (2.9) and energy (2.10), i.e.
N1ðtÞ � N1ð0Þ ¼
Z L2

L1

jw0ðxÞj
2dx; E1ðtÞ � E1ð0Þ ¼

1
2

Z L2

L1

ðj@xw0j
2 þ bjw0j

4Þdx; t P 0: ð2:11Þ
In order to present numerical methods for discretizing the problem (2.6)–(2.8), we choose time step s > 0 and mesh size
h ¼ ðL2 � L1Þ=N with N an even positive integer, denote the grid points and time steps as
xj :¼ L1 þ jh; j ¼ 0; . . . ;N; tn :¼ ns; n ¼ 0;1; . . . :
Let wn
j be the numerical approximation of wðxj; tnÞ (j ¼ 0;1; . . . ;N; n ¼ 0;1; . . .) and introduce the finite difference operators
dþt wn
j ¼

wnþ1
j � wn

j

s
; dtw

n
j ¼

wnþ1
j � wn�1

j

2s
; d�x wn

j ¼
wn

j � wn
j�1

h
;

dþx wn
j ¼

wn
jþ1 � wn

j

h
; dxw

n
j ¼

wn
jþ1 � wn

j�1

2h
; d2

xw
n
j ¼

wn
jþ1 � 2wn

j þ wn
j�1

h2 :
We will consider two finite difference methods for discretizing the problem (2.6)–(2.8). The first one is conservative Crank–
Nicolson finite difference (CNFD) method in which the Crank–Nicolson scheme is applied for temporal derivative and sec-
ond-order central finite difference is applied for spatial derivatives:
idþt wn
j ¼ �

1
4

d2
x ðw

nþ1
j þ wn

j Þ þ
b
4
ðjwnþ1

j j2 þ jwn
j j

2Þðwnþ1
j þ wn

j Þ; 0 6 j 6 N; n P 0: ð2:12Þ
The boundary condition (2.7) is discretized as:
wnþ1
1 � wnþ1

�1

2h
� ikwnþ1

0 ¼ 0;
wnþ1

Nþ1 � wnþ1
N�1

2h
� ikwnþ1

N ¼ 0; n P 0; ð2:13Þ
and the initial condition (2.8) is discretized as:
w0
j ¼ w0ðxjÞ; j ¼ 0;1; . . . ;N: ð2:14Þ
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In this CNFD method, at every time step, one needs to solve a fully nonlinear coupled system which is time consuming. Thus,
in practical computation, the Crank–Nicolson scheme for temporal derivative in (2.12) is replaced by the Crank–Nicolson/
leap-frog scheme for temporal derivative with respect to linear/nonlinear terms and it is usually called as semi-implicit finite
difference (SIFD) method:
idtw
n
j ¼ �

1
4

d2
x ðw

nþ1
j þ wn�1

j Þ þ bjwn
j j

2wn
j ; 0 6 j 6 N; n P 1: ð2:15Þ
Define the mass and energy in the discrete level as
Nn
1 :¼ h

2

XN�1

j¼0

jwn
j j

2 þ jwn
jþ1j

2
� �

þ ks
Xn

l¼1

jwl�1
2

N j
2 � jwl�1

2
0 j

2
� �

; n P 0; ð2:16Þ

En
1 :¼ h

2

XN�1

j¼0

jdþx wn
j j

2 þ b
2
jwn

j j
4 þ jwn

jþ1j
4

� �� �
þ ksIm

Xn

l¼1

w
l�1

2
N dþt �wl�1

N � w
l�1

2
0 dþt �wl�1

0

h i
; ð2:17Þ
respectively, where wlþ1=2
j ¼ 1

2 ðw
lþ1
j þ wl

jÞ. Then for the CNFD method (2.12)–(2.14), we can prove that the mass and energy are
conserved in the discrete level (see detailed proof in Appendix B):

Lemma 2.2. The CNFD method (2.12)–(2.14) conserves the mass and energy in the discrete level, i.e.
Nn
1 � N0

1; En
1 � E0

1; n P 0: ð2:18Þ
It is easy to see that both CNFD and SIFD methods are implicit, time symmetric, second order in both space and time, and the
memory cost is OðNÞ. The CNFD method is unconditionally stable and it conserves the mass and energy in the discrete level,
however, it needs to solve a fully nonlinear coupled system at every time step which might be tedious in programming and
time consuming in practical computation. The SIFD method is conditionally stable under the stability condition
s 6 1=ðjbjmax06j6N; nP0jwn

j j
2Þ and it needs only to solve a linear coupled system which can be solved very efficiently via

Thomas algorithm, thus it is efficient and easy to program and the computational cost per time step is OðNÞ.
2.2. Numerical methods based on a transformation

Based on the far field asymptotic behavior (2.4) of the solution w, we introduce the following transformation to ‘rest’ the
highly oscillatory phase background at far field:
/ðx; tÞ ¼ wðx; tÞe�ikx () wðx; tÞ ¼ /ðx; tÞeikx; x 2 R; t P 0: ð2:19Þ
Then we have
/ðx; tÞ ! A0
�e�iðk2þ2bjA0

�j
2Þt=2 ) @x/ðx; tÞ ! 0; x! �1; t P 0: ð2:20Þ
Plug (2.19) into (1.1) and notice (2.20), the original problem can be truncated and approximated as
i@t/ðx; tÞ ¼ �
1
2
@xx/� ik@x/þ

1
2

k2/þ bj/j2/; L1 < x < L2; t > 0; ð2:21Þ

@x/ðL1; tÞ ¼ @x/ðL2; tÞ ¼ 0; t > 0; ð2:22Þ

/ðx;0Þ ¼ /0ðxÞ :¼ w0ðxÞe�ikx; L1 6 x 6 L2: ð2:23Þ
For this truncated problem, we can define the modified mass and energy as
N2ðtÞ :¼
Z L2

L1

j/ðx; tÞj2dxþ k
Z t

0
ðj/ðL2; sÞj2 � j/ðL1; sÞj2Þds; ð2:24Þ

E2ðtÞ :¼ 1
2

Z L2

L1

j@x/j2 þ k2j/j2 � 2kImð/@x
�/Þ þ bj/j4

h i
dxþ kIm

Z t

0
/ðL2; sÞ@s

�/ðL2; sÞ � /ðL1; sÞ@s
�/ðL1; sÞ

� �
ds; t

P 0: ð2:25Þ
Then similar to the proof of Lemma 2.1, we can prove that the modified mass and energy are conserved:

Lemma 2.3. The truncated problem (2.21)–(2.23) conserves the energy and mass defined above, i.e.
N2ðtÞ � N2ð0Þ; E2ðtÞ � E2ð0Þ; t P 0: ð2:26Þ
Denote /n
j be the numerical approximation of /ðxj; tnÞ, then a numerical approximation of wðxj; tnÞ to the problem (2.6)–(2.8) is:
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wn
j ¼ /n

j eikxj ; j ¼ 0;1; . . . ;N; n ¼ 0;1; . . . : ð2:27Þ
Applying the conservative Crank–Nicolson finite difference discretization to the problem (2.21)–(2.23), we obtain a conser-
vative Crank–Nicolson finite difference through the transformation (2.27) (CNFD-T) to the original problem as
idþt /n
j ¼ �

1
2

d2
x þ 2ikdx � k2

� �
/

nþ1
2

j þ b
2
ðj/nþ1

j j2 þ j/n
j j

2Þ/nþ1
2

j ; 0 6 j 6 N; n P 0; ð2:28Þ
where /
nþ1

2
j ¼ 1

2 ð/
nþ1
j þ /n

j Þ. The boundary condition (2.22) is discretized as:
/nþ1
1 � /nþ1

�1

2h
¼ 0;

/nþ1
Nþ1 � /nþ1

N�1

2h
¼ 0; n P 0; ð2:29Þ
and the initial condition (2.23) is discretized as:
/0
j ¼ /0ðxjÞ ¼ w0ðxjÞe�ikxj ; j ¼ 0;1; . . . ;N: ð2:30Þ
Similarly, the above CNFD-T discretization (2.28) can be replaced by the following semi-implicit finite difference through the
transformation (2.27) (SIFD-T) to the original problem as
idt/
n
j ¼ �

1
4

d2
x þ 2ikdx � k2

� �
½/nþ1

j þ /n�1
j � þ bj/n

j j
2/n

j ; 0 6 j 6 N; n P 1: ð2:31Þ
In addition, due to the homogeneous Neumann boundary condition (2.22), the problem (2.21)–(2.23) can also be discretized
by the following time-splitting finite difference (TSFD) method in which a time-splitting technique is applied first to decou-
ple the nonlinearity and then a Crank–Nicolson finite difference is applied to discretize a linear Schrödinger equation. From
time t ¼ tn to t ¼ tnþ1, we first solve
i@t/ðx; tÞ ¼
1
2

k2 þ 2bj/ðx; tÞj2
h i

/ðx; tÞ; L1 6 x 6 L2; t P tn; ð2:32Þ
for time step of length s, and then solve
i@t/ðx; tÞ ¼ � 1
2 @xx/ðx; tÞ � ik@x/ðx; tÞ; L1 < x < L2; t > tn;

@x/ðL1; tÞ ¼ @x/ðL2; tÞ ¼ 0; t P tn;

(
ð2:33Þ
for the same time step s. In (2.32), it leaves the density qðx; tÞ :¼ j/ðx; tÞj2 unchanged [11], i.e. qðx; tÞ ¼ qðx; tnÞ for t P tn and
thus it can be solved analytically as [11]
/ðx; tÞ ¼ e�iðt�tnÞðk2þ2bj/ðx;tnÞj2Þ=2/ðx; tnÞ; L1 6 x 6 L2; t P tn:
The linear Schrödinger equation (2.33) can be discretized by the CNFD method. By combining the time-splitting via the
second-order Strang splitting [37], we obtain a time-splitting finite difference through the transformation (2.27) (TSFD-T)
to the original problem as
/ð1Þj ¼ e�isðk2þ2bj/n
j j

2Þ=4/n
j ;

i
/ð2Þ

j
�/ð1Þ

j

s ¼ � 1
4 ðd

2
x þ 2ikdxÞ½/ð2Þj þ /ð1Þj �; 0 6 j 6 N; n P 0;

/nþ1
j ¼ e�isðk2þ2bj/ð2Þ

j
j2Þ=4/ð2Þj ;

8>>>><>>>>: ð2:34Þ
with the boundary conditions for the middle step as
/ð2Þ�1 ¼ /ð2Þ1 ; /ð2ÞNþ1 ¼ /ð2ÞN�1: ð2:35Þ
Again, define the mass and energy in the discrete level as
Nn
2 :¼ h

2

XN�1

j¼0

j/n
j j

2 þ j/n
jþ1j

2
� �

þ ksRe
Xn

l¼1

/
l�1

2
N

�/
l�1

2
N�1 � /

l�1
2

1
�/

l�1
2

0

� �
; n P 0; ð2:36Þ

En
2 : ¼ h

4

XN�1

j¼0

2jdþx /n
j j

2 þ bðj/n
j j

4 þ j/n
jþ1j

4Þ
h i

� khIm
XN�1

j¼1

/n
j dx

�/n
j

þ ks
2

Im
Xn

l¼1

/
l�1

2
N�1d

þ
t

�/l�1
N þ /

l�1
2

N dþt
�/l�1

N�1 � /
l�1

2
0 dþt

�/l�1
1 � /

l�1
2

1 dþt
�/l�1

0

h i
; ð2:37Þ
respectively, where Reðf Þ is the real part of function f and /lþ1=2
j ¼ 1

2 ð/
lþ1
j þ /l

jÞ. Then similar to the proof of Lemma 2.2, for the
TSFD-T method (2.34), we can prove that the mass is conserved in the discrete level, and respectively, for CNFD-T method
(2.28)–(2.30), both the mass and energy are conserved in the discrete level:
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Lemma 2.4. The TSFD-T method (2.34) conserves the mass in the discrete level, and respectively, the CNFD-T method (2.28)–
(2.30), conserves the mass and energy in the discrete level, i.e.
Table 2
Spatial
error an
h ¼ 0:00

h

CNFD
SIFD
CNFD
SIFD
TSFD

s

CNFD
SIFD
CNFD
SIFD
TSFD
Nn
2 � N0

2; En
2 � E0

2; n P 0: ð2:38Þ
It is easy to see that CNFD-T, SIFD-T and TSFD-T methods are implicit, time symmetric, second order in both space and time,
and the memory cost is OðNÞ. The CNFD-T method is unconditionally stable and it conserves the mass and energy in the dis-
crete level, however, it needs to solve a fully nonlinear coupled system at every time step which might be tedious in pro-
gramming and time consuming in practical computation. The TSFD-T method is unconditionally stable and conserves the
mass in the discrete level. The SIFD-T method is conditionally stable under the stability condition
s 6 1=ðjbjmax06j6N;nP0jwn

j j
2Þ. Both TSFD-T and SIFD-T need only to solve a linear coupled system which can be solved very

efficiently via Thomas algorithm, thus they are efficient and easy to program and the computational cost per time step is
OðNÞ.
2.3. Numerical comparison of different methods

In this subsection, we compare numerically the accuracy of the above five numerical methods, i.e. CNFD, SIFD, CNFD-T,
SIFD-T and TSFD-T, for simulating NLSE (1.1) when its solution has non-rest (or highly oscillatory) phase background at far
field, e.g. type II dark soliton. To this end, we take b ¼ 1 in (1.1) and the initial data w0 in (1.12) as
w0ðxÞ ¼ ½a tanhðaðx� x0ÞÞ þ iðv � kÞ�eiðkxþh0Þ; x 2 R;
with a ¼ 3;v ¼ 2; k ¼ 2 and x0 ¼ h0 ¼ 0. Then the NLSE (1.1) with (1.12) has the exact type II dark soliton solution (1.11), i.e.
wðx; tÞ ¼ wD2ðx; tÞwith the corresponding parameter values. In our computation, we take L1 ¼ �4 and L2 ¼ 12 which are large
enough so that the truncation errors can be ignored. In order to quantify the numerical solution, we use the l1-norm of the
error between the numerical solution wn

j and the exact solution wðxj; tnÞ as
e1ðtnÞ :¼ max
06j6N

jwðxj; tnÞ � wn
j j; n P 0: ð2:39Þ
Table 2.1 shows the spatial and temporal errors e1ðT ¼ 2Þ, i.e. at time tn ¼ T ¼ 2, for the above five numerical methods
under different mesh size h and time step s.

From Table 2.1 and additional numerical results not shown here for brevity, we can draw the following conclusions: (i) all
the five numerical methods are second-order accurate in both space and time, and thus they are comparable for solving
.1
and temporal error analysis of different numerical methods for NLSE (1.1) with highly oscillatory phase background at far field: (i) top half is for spatial
alysis with a very small time step s ¼ 10�5 under different mesh size h; (ii) bottom half is for temporal error analysis with a very small mesh size
2 under different time step s.

h0 = 0.1 h0/2 h0/4 h0/8 h0/16

3.52E�1 8.74E�2 2.17E�2 5.42E�3 1.35E�3
3.52E�1 8.74E�2 2.17E�2 5.42E�3 1.35E�3

-T 8.12E�2 1.96E�2 4.88E�3 1.22E�3 3.04E�4
-T 8.12E�2 1.96E�2 4.88E�3 1.22E�3 3.04E�4
-T 8.12E�2 1.96E�2 4.88E�3 1.22E�3 3.04E�4

s0 = 0.025 s0/2 s0/4 s0/8 s0/16

2.64E�1 6.66E�2 1.66E�2 4.17E�3 1.05E�3
5.07E�1 2.29E�1 5.33E�2 8.30E�3 1.63E�3

-T 2.64E�1 6.60E�2 1.65E�2 4.15E�3 1.06E�3
-T 5.07E�1 2.29E�1 5.32E�2 8.28E�3 1.58E�3
-T 1.44E�1 1.03E�2 2.58E�3 6.65E�4 1.68E�4
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Fig. 2.1. Time evolution of the error e1ðtÞ :¼maxL16x6L2 jwðx; tÞ � wD2ðx; tÞj between a type II dark soliton and its perturbation at different e.
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Fig. 2.2. Dynamics of the density jwj for the interaction of two type II dark solitons of NLSE (1.1) with a ¼ 2:5 and different parameter values: (i) ‘fast’
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phase background with k ¼ 0:5 under v2 ¼ 0;v1 ¼ 2k ¼ 1 and x0 ¼ 2 (c); and v1 ¼ 2:5k ¼ 1:25;v2 ¼ �0:5k ¼ �0:25 and x0 ¼ 2 (d).
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NLSE. (ii) In general, for fixed mesh size h, CNFD and SIFD have the same spatial discretization error, and CNFD-T, SIFD-T and
TSFD-T have the same spatial discretization error which is much smaller than that of CNFD and SIFD. (iii) In general, for fixed
time step s, SIFD and SIFD-T have the same temporal discretization error, CNFD and CNFD-T have the same temporal discret-
ization error which is about half of SIFD and SIFD-T methods, TSFD-T has the smallest temporal discretization error among
the five numerical methods. (iv) Based on the above comparison, we suggest that TSFD-T is the best numerical method
among the five numerical methods since it is the most accurate, unconditional stable, easy to program, less computational
cost per time step; and it conserves the mass in the discrete level.

2.4. Stability and interaction of type II dark solitons

Now we apply the TSFD-T method to study numerically the stability of type II dark soliton and their interactions of NLSE
(1.1). To this end, we take b ¼ 1 in (1.1). For the study of stability, we choose the initial data w0 in (1.12) as a type II dark
soliton with a perturbation as
w0ðxÞ ¼ ½a tanhðaðx� x0ÞÞ þ iðv � kÞ�eiðkxþh0Þ þ ee�ðx�x0þx1Þ2 ; x 2 R;
with a ¼ 1;v ¼ 1; k ¼ 1; x1 ¼ 0:1; x0 ¼ �2:5 and h0 ¼ 0. The problem is solved numerically on X ¼ ½L1; L2� with L1 ¼ �15 and
L2 ¼ 15, mesh size h ¼ 0:006 and time step s ¼ 10�3. Fig. 2.1 depicts the time evolution of the error between the solution w of
the NLSE (1.1) with the above initial data and its corresponding type II dark soliton wD2 in (1.11) with the corresponding
parameter values, i.e. eðtÞ :¼maxL16x6L2 jwðx; tÞ � wD2ðx; tÞj, under different e. This result clearly demonstrates that the type
II dark soliton (1.11) is dynamically stable in the NLSE (1.1). Similarly, for the study of the interaction between two type
II dark solitons, we choose the initial data w0 in (1.12) as
w0ðxÞ ¼ eikx ½a tanhðaðxþ x0ÞÞ þ iðv1 � kÞ�; �1 < x < 0;
�½a tanhðaðx� x0ÞÞ þ iðv2 � kÞ�; 0 6 x <1;

	
ð2:40Þ
where x0 > 0 is chosen such that the two dark solitons are initially centered at x ¼ �x0 and well-separated, k – 0 is the
‘velocity’ of the phase background, v1 P 0 and v2 6 0 satisfying v1 þ v2 ¼ 2k are the velocities of the left-going soliton
and right-going soliton, respectively. The problem is solved numerically on X ¼ ½L1; L2� with L1 ¼ �15 and L2 ¼ 15, mesh size
h ¼ 0:02 and time step s ¼ 10�4.

Before presenting the numerical result, we define the following four times which will be used hereafter. In the case when
the two solitons can be transmitted through each other, we denote tc as the time when the two soliton completely collide (or
overlap) with each other and tacð> tcÞ as some time after collision, i.e. the time when two soliton go across each other and
completely separated again. In the case when the two solitons cannot go across each other, we denote tnr as the time when
the two soliton come closest to each other, and taf ð> tnrÞ as some time afterward when the two soliton separate again.

Fig. 2.2 shows time evolution of the density j w j for the interaction of two type II dark solitons of NLSE under different
parameter values of x0; k; a;v1 and v2.

From Fig. 2.2 and additional numerical results not shown here for brevity, we can draw the following conclusions for the
interaction of two type II dark solitons of NLSE: (i) The interaction of two initially well-separated type II dark solitons is
repulsive. If the velocity of the two solitons are both small enough, they cannot be transmitted through each other. Other-
wise, they will pass through each other without any oscillation created. (ii) At the collision, the peak value of the amplitude is
equal to the sum of the peak values of the two solitons initially. (iii) After collision, the two solitons separate completely and
recover their initial velocities and profiles which again demonstrates the NLSE (1.1) is an integrable system even for the
interaction of type II dark solitons.

3. Numerical methods for NLSE with type I dark solitons

In this section, we will compare different numerical methods for the NLSE (1.1) with (1.12) when the solution admits type
I dark soliton at far field, i.e. the solution has nonzero but rest background at far field. We assume that the initial data w0

satisfies
w0ðxÞ ! A0
�; x! �1; ð3:1Þ
where Aþ – A� are two given complex constants. Similar to those in Section 2, we have
wðx; tÞ ! A0
�e�iðk2þ2bjA0

�j
2Þt=2; x! �1; t P 0: ð3:2Þ
This implies that the solution wðx; tÞ of the NLSE (1.1) with (1.12) has nonzero time-dependent rest background at far field.

3.1. Numerical methods

Based on the far field asymptotic behavior (3.2) of the solution w, differentiating (3.2) with respect to x, we get
@xwðx; tÞ ! 0; x! �1; t P 0: ð3:3Þ
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Thus the original problem (1.1) with (1.12) can be truncated and approximated as
i@twðx; tÞ ¼ �
1
2
@xxwðx; tÞ þ bjwðx; tÞj2wðx; tÞ; L1 < x < L2; t > 0; ð3:4Þ

@xwðL1; tÞ ¼ @xwðL2; tÞ ¼ 0; t > 0; ð3:5Þ

wðx;0Þ ¼ w0ðxÞ; L1 6 x 6 L2: ð3:6Þ

For the above problem, we can define the mass and energy as
N3ðtÞ :¼
Z L2

L1

jwðx; tÞj2dx; E3ðtÞ :¼ 1
2

Z L2

L1

ðj@xwj2 þ bjwj4Þdx; t P 0: ð3:7Þ
Then similar to the proof of Lemma 2.1, we can prove that the mass and energy are conserved:

Lemma 3.1. The truncated problem (3.4)–(3.6) conserves the mass and energy (3.7), i.e.
N3ðtÞ � N3ð0Þ ¼
Z L2

L1

jw0ðxÞj
2dx; E3ðtÞ � E3ð0Þ ¼

1
2

Z L2

L1

ðj@xw0j
2 þ bjw0j

4Þdx; t P 0: ð3:8Þ
For the numerical discretization of (3.4)–(3.6), the CNFD method (2.12)–(2.14) and SIFD method (2.15) with (2.13) and (2.14)
are still valid provided that we set k ¼ 0 in them; and the TSFD method (2.34) is still valid provided that we set k ¼ 0 and
replace / by w in it. In addition, we can also discretize (2.33) with k ¼ 0 and / replaced by w, which can be viewed as a free
Schrödinger equation from (3.4) by applying the time-splitting technique, via a cosine pseudospectral method [36]. In fact,
denote the grid points as xjþ1

2
:¼ L1 þ hðjþ 1

2Þ for j ¼ 0;1; . . . ;N � 1, and ll ¼ lp
L2�L1

for l ¼ 0;1; . . . ;N � 1, let wn
jþ1

2
be the numer-

ical approximation of wðxjþ1
2
; tnÞ for j ¼ 0;1; . . . ;N � 1 and n P 0. Then a time-splitting cosine pseudospectral (TSCP) method

for discretizing the problem (3.4)–(3.6) reads as [8]
wð1Þ
jþ1

2
¼ e

�ibsjwn
jþ1

2
j2=2

wn
jþ1

2
;

wð2Þ
jþ1

2
¼
XN�1

l¼0

ale�il2
l
s=2dwð1Þl cosðllðxjþ1

2
� L1ÞÞ;

wnþ1
jþ1

2
¼ e

�ibsjwð2Þ
jþ1

2

j2=2
wð2Þ

jþ1
2
; j ¼ 0;1; . . . ;N � 1; n P 0; ð3:9Þ
where dwð1Þl (l ¼ 0;1; . . . ;N � 1) are the discrete cosine transform coefficients defined as
d
wð1Þl ¼ al

XN�1

j¼0

wð1Þ
jþ1

2
cosðllðxjþ1

2
� L1ÞÞ; l ¼ 0;1; . . . ;N � 1:
with
a0 ¼
ffiffiffiffi
1
N

r
; al ¼

ffiffiffiffi
2
N

r
; 1 6 l 6 N � 1:
Similar to those in Section 2.2, we can prove that CNFD, TSFD and TSCP methods conserve the mass in the discrete level,
meanwhile CNFD method also conserves the energy in the discrete level. Moreover, CNFD, SIFD, TSFD and TSCP are time
symmetric and the memory cost is OðNÞ. Furthermore, CNFD, SIFD and TSFD methods are implicit and second order in both
space and time, while TSCP is explicit, second order in time and spectral order in space. In addition, CNFD, TSFD and TSCP are
unconditionally stable, while SIFD method is conditionally stable under the stability condition s 6 1=ðjbjmax06j6N;nP0jwn

j j
2Þ.

At every time step, CNFD method needs to solve a fully nonlinear coupled system which might be tedious in programming
and time consuming in practical computation, and both SIFD and TSFD methods need only to solve a linear coupled system
which can be solve very efficiently via Thomas algorithm, thus they are efficient and easy to program and the computational
cost per time step is OðNÞ. The computational cost of TSCP per time step is OðN ln NÞ via the discrete cosine transform (DCT).

3.2. Numerical comparison of different methods

In this subsection, we compare numerically the accuracy of the above four numerical methods, i.e. CNFD, SIFD, TSFD and
TSCP, for simulating NLSE (1.1) when its solution has nonzero rest background at far field, e.g. type I dark solitons. To this
end, we take b ¼ 1 in (1.1) and the initial data w0 in (1.12) as
w0ðxÞ ¼ iv þ a tanhðaðx� x0ÞÞ½ �eih0 ; x 2 R;
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with a ¼ 2;v ¼ 1 and x0 ¼ h0 ¼ 0. Then the NLSE (1.1) with (1.12) has the exact type I dark soliton solution (1.10), i.e.
wðx; tÞ ¼ wD1ðx; tÞ with the corresponding parameter values. In our computation, we take L1 ¼ �15 and L2 ¼ 30 which are
large enough so that the truncation errors can be ignored. Table 3.1 shows the spatial and temporal errors e1ðT ¼ 2Þ defined
in (2.39) for the above four numerical methods under different mesh size h and time step s.

From Table 3.1 and additional numerical results not shown here for brevity, we can draw the following conclusions: (i)
CNFD, SIFD and TSFD methods are second-order accurate in both space and time, while TSCP is second-order accurate in time
and spectral accurate in space. (ii) In general, for fixed mesh size h, CNFD, SIFD and TSFD have the same spatial discretization
error, and TSCP has much smaller spatial discretization error. (iii) In general, for fixed time step s, SIFD and CNFD have sim-
ilar temporal discretization error, TSFD and TSCP have similar temporal discretization error which is usually about one order
of magnitude smaller than that of SIFD and CNFD when s is small. (iv) Based on the above comparison, in general, we suggest
that TSCP is the best one among the four numerical methods since it is the most accurate, unconditional stable, easy to pro-
gram, and it conserves the mass in the discrete level.
3.3. Stability and interaction of type I dark solitons

Now we apply the TSCP method to study numerically the stability of type I dark soliton and their interactions of NLSE
(1.1). To this end, we take b ¼ 1 in (1.1). For the study of stability, we choose the initial data w0 in (1.12) as a type I dark
soliton with a perturbation as
Table 3
Spatial
analysis
under d

h

CNFD
SIFD
TSFD
TSCP

s

CNFD
SIFD
TSFD
TSCP
w0ðxÞ ¼ iv þ a tanhðaðx� x0ÞÞ½ �eih0 þ ee�ðx�x0þx1Þ2 ; x 2 R;
with a ¼ 2, v ¼ 2; x1 ¼ 0:1; x0 ¼ 5 and h0 ¼ 0. The problem is solved numerically on X ¼ ½L1; L2� with L1 ¼ �25 and L2 ¼ 25,
mesh size h ¼ 0:05 and time step s ¼ 10�4. Fig. 3.1 depicts the time evolution of the error between the solution w of the NLSE
(1.1) with the above initial data and its corresponding type I dark soliton wD1 in (1.10) with the corresponding parameter
values, i.e. eðtÞ :¼maxL16x6L2 jwðx; tÞ � wD1ðx; tÞj, under different e. This result clearly demonstrates that the type I dark soliton
(1.10) is dynamically stable in the NLSE (1.1). Similarly, for the study of interaction between two type I dark solitons, we
choose the initial data w0 in (1.12) as
w0ðxÞ ¼
iv þ a tanhðaðxþ x0ÞÞ; �1 < x < 0;
� �iv þ a tanhðaðx� x0ÞÞ½ �; 0 6 x <1;

	
ð3:10Þ
where x0 > 0 is chosen such that the two type I dark solitons are initially centered at x ¼ �x0 and well-separated, v > 0 is the
velocity of the soliton centered at x ¼ �x0 at t ¼ 0; a > 0 is a constant. The problem is solved numerically on X ¼ ½L1; L2� with
.1
and temporal error analysis of different numerical methods for NLSE (1.1) with nonzero rest background at far field: (i) top half is for spatial error
with a very small time step s ¼ 10�6 under different mesh size h; (ii) bottom half is for temporal error analysis with a very small mesh size h ¼ 0:005

ifferent time step s.
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Fig. 3.1. Time evolution of the error e1ðtÞ :¼maxL16x6L2 jwðx; tÞ � wD1ðx; tÞj between a type I dark soliton and its perturbation at different e.
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L1 ¼ �15 and L2 ¼ 15, mesh size h ¼ 0:03 and time step s ¼ 10�3. Fig. 3.2 displays time evolution of the density jwj for the
interaction of two type I dark solitons of NLSE under different parameter values of x0; a and v.

From Fig. 3.2 and additional numerical results not shown here for brevity, we can draw the following conclusions for the
interaction of two type I dark solitions in NLSE: (i) The interaction of two initially well-separated type I dark solitons is repul-
sive. After the interaction, the two solitons separate completely. (ii) Before the two solitons meet each other or after they
separate completely, the two solitons move at constant velocities and preserves their profiles in density exactly. During
the interaction, there is no oscillation occurs. (iii) For fixed amplitude a > 0, there exists a critical vcðaÞ > 0 depending only
on the amplitude a. When 0 < v < vcðaÞ, the two solitons cannot go across each other, they slow down when they move to-
wards each other, then stop moving before meeting each other, and finally reflect and move away from each other. On the
contrary, when v > vcðaÞ, the two solitons move across each other without changing their direction, they come close to each
other and collide, then across with each other and continue their motion without changing their velocities. (iv) By our exten-
sive numerical results, we find numerically the critical velocity vcðaÞ satisfies
vcðaÞ ¼ 0:5455aþ 0:0505; a > 0:
In addition, if collision happens, then the peak value of the amplitude at the collision is equal to the sum of the peak values of
the two solitons initially.
4. Numerical methods for NLSE with bright solitons

In this section, we will compare different numerical methods for the NLSE (1.1) with (1.12) when the solution admits
bright soliton at far field, i.e. the solution decays to zero at far field. We assume that the initial data w0 satisfies
w0ðxÞ ! 0; x! �1: ð4:1Þ
Similar to those in Section 2, we have
wðx; tÞ ! 0; x! �1; t P 0: ð4:2Þ
This implies that the solution wðx; tÞ of the NLSE (1.1) with (1.12) decays to zero at far field.
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4.1. Numerical methods

Based on the far field asymptotic behavior (4.2) of the solution w, the original problem (1.1) with (1.12) can be truncated
and approximated as
i@twðx; tÞ ¼ �
1
2
@xxwðx; tÞ þ bjwðx; tÞj2wðx; tÞ; L1 < x < L2; t > 0; ð4:3Þ

wðx;0Þ ¼ w0ðxÞ; L1 6 x 6 L2; ð4:4Þ
with either the homogeneous Neumann boundary condition
@xwðL1; tÞ ¼ @xwðL2; tÞ ¼ 0; t > 0; ð4:5Þ
or the homogeneous Dirichlet boundary condition
wðL1; tÞ ¼ wðL2; tÞ ¼ 0; t > 0; ð4:6Þ
or the periodic boundary condition
wðL1; tÞ ¼ wðL2; tÞ; @xwðL1; tÞ ¼ @xwðL2; tÞ; t > 0: ð4:7Þ
Again, similar to the proof of Lemma 2.1, we can prove that the above problem (4.3)–(4.4) with either (4.5) or (4.6) or (4.7)
conserves the mass and energy defined in (3.7).

For the numerical discretization, when the homogeneous Neumann boundary condition (4.5) is used, i.e. (4.3)–(4.5), all
the four numerical methods CNFD, SIFD, TSFD and TSCP we have discussed in Section 3 can be applied straightforward. When
the homogeneous Dirichlet boundary condition (4.6) is used, i.e. (4.3)–(4.4) with (4.6), the CNFD (2.12), SIFD (2.15) and TSFD
(2.34) methods are still valid provided that we replace 0 6 j 6 N by 1 6 j 6 N � 1, and set k ¼ 0 and replace / by w in (2.34),
meanwhile we replace the boundary discretization in (2.13) and (2.35) by
wnþ1
0 ¼ wnþ1

N ¼ 0; and wð2Þ0 ¼ wð2ÞN ¼ 0 n P 0;
respectively. In addition, we can also discretize (2.33) with k ¼ 0 and / replaced by w, which can be viewed as a free Schrö-
dinger equation from (4.3) with homogeneous Dirichlet boundary condition by applying the time-splitting technique, via a
sine pseudospectral method [36]. In fact, a time-splitting sine pseudospectral (TSSP) method for discretizing the problem
(4.3)–(4.4) with (4.6) reads as [13]
wð1Þj ¼ e�ibsjwn
j j

2=2wn
j ;

wð2Þj ¼
XN�1

l¼0

e�il2
l
s=2dwð1Þl sinðllðxj � L1ÞÞ;

wnþ1
j ¼ e�ibsjwð2Þ

j
j2=2wð2Þj ; j ¼ 1;2; . . . ;N � 1; n P 0; ð4:8Þ
where dwð1Þl (l ¼ 1;2; . . . ;N � 1) are the discrete sine transform coefficients defined as
d
wð1Þl ¼

2
N

XN�1

j¼1

wð1Þj sinðllðxj � L1ÞÞ; l ¼ 1;2; . . . ;N � 1:
Similarly, when the periodic boundary condition (4.7) is used, i.e. (4.3)–(4.4) with (4.7), again, the CNFD (2.12), SIFD (2.15)
and TSFD (2.34) methods are still valid provided that we replace 0 6 j 6 N by 0 6 j 6 N � 1, and set k ¼ 0 and replace / by w
in (2.34); and the boundary discretization in (2.13) and (2.35) replaced by
wnþ1
�1 ¼ wnþ1

N�1; wnþ1
N ¼ wnþ1

0 ; and wð2Þ�1 ¼ wð2ÞN�1; wð2ÞN ¼ wð2Þ0 ; n P 0;
respectively. In addition, we can also discretize (2.33) with k ¼ 0 and / replaced by w, which can be viewed as a free Schrö-
dinger equation from (4.3) with periodic boundary condition by applying the time-splitting technique, via a Fourier pseudo-
spectral method [36]. In fact, a time-splitting Fourier pseudospectral (TSFP) method for discretizing the problem (4.3)–(4.4)
with (4.7) reads as [10]
wð1Þj ¼ e�ibsjwn
j j

2=2wn
j ;

wð2Þj ¼
XN=2�1

l¼�N=2

e�ik2
l s=2dwð1Þl eiklðxj�L1Þ;
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wnþ1
j ¼ e�ibsjwð2Þ

j
j2=2wð2Þj ; j ¼ 0;1; . . . ;N � 1; n P 0; ð4:9Þ
where kl ¼ 2lp
L2�L1

for l ¼ �N=2; . . . ;N=2� 1 and dwð1Þl (l ¼ �N=2; . . . ;N=2� 1) are the discrete Fourier transform coefficients de-
fined as
d
wð1Þl ¼

1
N

XN�1

j¼0

wð1Þj e�iklðxj�L1Þ; l ¼ �N
2
; . . . ;

N
2
� 1:
Again, similar to those in Section 2.2, we can prove that CNFD, TSFD, TSCP TSSP and TSFP methods conserve the mass in the
discrete level, meanwhile CNFD method also conserves the energy in the discrete level. Moreover, CNFD, SIFD, TSFD, TSCP,
TSSP and TSFP methods are time symmetric and the memory cost is OðNÞ. Furthermore, CNFD, SIFD and TSFD methods are
implicit and second order accurate in both space and time, while TSCP, TSSP and TSFP methods are explicit, and second order
in time and spectral order in space. In addition, CNFD, TSFD, TSSP, TSFP and TSCP methods are unconditionally stable, while
SIFD method is conditionally stable under the stability condition s 6 1=ðjbjmax06j6N;nP0jwn

j j
2Þ. At every time step, CNFD

method needs to solve a fully nonlinear coupled system which might be tedious in programming and time consuming in
practical computation, and both SIFD and TSFD methods need only to solve a linear coupled system which can be solved very
efficiently via Thomas algorithm, thus they are efficient and easy to program and the computational cost per time step is
OðNÞ. The computational cost of TSCP, TSSP and TSFP per time step is OðN ln NÞ via DCT, discrete sine transform (DST) and
fast Fourier transform (FFT).
4.2. Numerical comparison of different methods

In this subsection, we compare numerically the accuracy of the above six numerical methods, i.e. CNFD, SIFD, TSFD, TSCP,
TSSP and TSFP for simulating NLSE (1.1) when its solution decays to zero at far field, e.g. bright solitons. To this end, we take
b ¼ �1 in (1.1) and the initial data w0 in (1.12) as
w0ðxÞ ¼ asechðaðx� x0ÞÞeiðvxþh0Þ; x 2 R;
with a ¼ 2;v ¼ 1 and x0 ¼ h0 ¼ 0. Then the NLSE (1.1) with (1.12) has the exact bright soliton solution (1.5), i.e.
wðx; tÞ ¼ wBðx; tÞwith the corresponding parameter values. In our computation, we take L1 ¼ �15 and L2 ¼ 20 which are large
enough so that the truncation errors can be ignored. Table 4.1 shows the spatial and temporal errors e1ðT ¼ 5Þ defined in
(2.39) for the above numerical methods under different mesh size h and time step s when the original problem is truncated
via the homogeneous Neumann boundary condition (4.5), Tables 4.2 and 4.3 depict similar results when the homogeneous
Dirichlet boundary condition (4.6) and periodic boundary condition (4.7) are applied, respectively.

From Tables 4.1,4.2,4.3 and additional numerical results not shown here for brevity, we can draw the following conclu-
sions: (i) CNFD, SIFD and TSFD methods are second-order accurate in space and time, while TSCP, TSSP and TSFP methods are
second-order accurate in time and spectral accurate in space. (ii) In general, for fixed mesh size h, CNFD, SIFD and TSFD
methods have the same spatial discretization error, and TSCP, TSSP and TSFP methods have the same spatial discretization
error which is much smaller than that of CNFD, SIFD and TSFD methods. (iii) In general, for fixed time step s, TSFD, TSCP, TSSP
and TSFP methods have similar temporal discretization error, SIFD and CNFD methods have the largest and smallest errors in
temporal discretization, respectively, they are all in the same order of magnitude. (iv) Based on the above comparison, in
general, we suggest that either TSSP or TSCP or TSFP can be used among the above numerical methods since they are the
most accurate, unconditional stable, easy to program; and they conserve the mass in the discrete level.
.1
and temporal error analysis of different numerical methods for NLSE (1.1) with zero far field condition when the homogeneous Neumann boundary
n (4.5) is used in the truncation: (i) top half is for spatial error analysis with a very small time step s ¼ 10�5 under different mesh size h; (ii) bottom half
mporal error analysis with a very small mesh size h ¼ 0:0035 under different time step s.

h0 = 0.5 h0/2 h0/4 h0/8 h0/16

2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
3.15E�1 2.44E�4 4.35E�9 <1E�9 <1E�9

s0 = 0.1 s0/2 s0/4 s0/8 s0/16

1.07E�1 2.71E�2 6.72E�3 1.58E�3 2.95E�4
7.61E�1 1.23E�1 2.91E�2 7.23E�3 1.85E�3
3.74E�1 8.52E�2 2.10E�2 5.31E�3 1.38E�3
2.18E�1 5.90E�2 1.51E�2 3.79E�3 9.50E�4



Table 4.2
Spatial and temporal error analysis of different numerical methods for NLSE (1.1) with zero far field condition when the homogeneous Dirichlet boundary
condition (4.6) is used in the truncation: (i) top half is for spatial error analysis with a very small time step s ¼ 10�5 under different mesh size h; (ii) bottom half
is for temporal error analysis with a very small mesh size h ¼ 0:0035 under different time step s.

h h0 = 0.5 h0/2 h0/4 h0/8 h0/16

CNFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
SIFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
TSFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
TSSP 3.95E�1 2.22E�4 3.93E�9 <1E�9 <1E�9

s s0 = 0.1 s0/2 s0/4 s0/8 s0/16

CNFD 1.07E�1 2.71E�2 6.72E�3 1.58E�3 2.95E�4
SIFD 7.61E�1 1.23E�1 2.88E�2 7.19E�3 1.81E�3
TSFD 3.74E�1 8.52E�2 2.10E�2 5.31E�3 1.35E�3
TSSP 2.18E�1 5.90E�2 1.51E�2 3.79E�3 9.49E�4

Table 4.3
Spatial and temporal error analysis of different numerical methods for NLSE (1.1) with zero far field condition when the periodic boundary condition (4.7) is
used in the truncation: (i) top half is for spatial error analysis with a very small time step s ¼ 10�5 under different mesh size h; (ii) bottom half is for temporal
error analysis with a very small mesh size h ¼ 0:0035 under different time step s.

h h0 = 0.5 h0/2 h0/4 h0/8 h0/16

CNFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
SIFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
TSFD 2.48 8.50E�1 1.79E�1 4.33E�2 1.07E�2
TSFP 3.94E�1 2.21E�4 3.93E�9 <1E�9 <1E�9

s s0 = 0.1 s0/2 s0/4 s0/8 s0/16

CNFD 1.07E�1 2.71E�2 6.72E�3 1.58E�3 2.95E�4
SIFD 7.61E�1 1.23E�1 2.91E�2 7.19E�3 1.79E�3
TSFD 3.74E�1 8.52E�2 2.10E�2 5.31E�3 1.37E�3
TSFP 2.18E�1 5.90E�2 1.53E�2 3.81E�3 9.50E�4
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4.3. Stability and interaction of bright solitons

For completeness, here we also apply the TSCP method to study numerically the stability of bright soliton and their inter-
actions of NLSE (1.1). To this end, we take b ¼ �1 in (1.1). For the study of stability, we choose the initial data w0 in (1.12) as a
bright soliton with a perturbation as
w0ðxÞ ¼ asechðaðx� x0ÞÞeiðvxþh0Þ þ ee�ðx�x0þx1Þ2 ; x 2 R;
with a ¼ 1, v ¼ 1; x1 ¼ 0:1; x0 ¼ �5 and h0 ¼ 0. The problem is solved numerically on X ¼ ½L1; L2� with L1 ¼ �25 and L2 ¼ 25,
mesh size h ¼ 0:05 and time step s ¼ 10�4. Fig. 4.1 displays the time evolution of the error between the solution w of the
NLSE (1.1) with the above initial data and its corresponding bright soliton wB in (1.5) with the corresponding parameter val-
ues, i.e. e1ðtÞ :¼maxL16x6L2 jwðx; tÞ � wBðx; tÞj, under different e. This result clearly demonstrates that the bright soliton (1.5) is
dynamically stable in the NLSE (1.1).

Similarly, for the study of interactions between two bright solitons, we choose the initial data w0 in (1.12) as
w0ðxÞ ¼ a1sechða1ðx� x0ÞÞeiv1x þ a2sechða2ðxþ x0ÞÞeiv2x; x 2 R; ð4:10Þ
where x0 ¼ 15 > 0 is chosen such that the two bright solitons are initially centered at x ¼ �x0 and well-separated, v1 < 0 and
v2 > 0 are the velocities of two solitons at t ¼ 0; a1 > 0 and a2 > 0 are the amplitudes of the two solitons. The problem is
0 2.5 5
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Fig. 4.1. Time evolution of the error e1ðtÞ :¼maxL16x6L2 jwðx; tÞ � wBðx; tÞj between a bright soliton and its perturbation at different e.
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Fig. 4.2. Dynamics of the density jwj for the interaction of two bright solitons of NLSE (1.1) with x0 ¼ 15 under different cases: (a) ‘high’ velocity a1 ¼ a2 ¼ 2,
v1 ¼ 5 and v2 ¼ �5; (b) ‘low’ velocity a1 ¼ a2 ¼ 2, v1 ¼ 1 and v2 ¼ �1; and (c) different amplitudes with the same velocity a1 ¼ 2; a2 ¼ 1; v1 ¼ 5 and
v2 ¼ �5.
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solved numerically with L1 ¼ �30 and L2 ¼ 30, mesh size h ¼ 0:05 and time step s ¼ 10�3. Fig. 4.2 shows time evolution of
the density jwj for the interaction of two bright solitons of NLSE under different parameter values of a1; a2, v1 and v2.

From Fig. 4.2 and additional numerical results not shown here for brevity, we can draw the following conclusions for the
interaction of two bright solitons in NLSE: (i) The interaction of two initially well-separated bright solitons is attractive. After
the interaction, the two solitons separate completely. (ii) Before the two solitons meet each other or after they separate com-
pletely, the two solitons move at constant velocities and preserves their profiles in density exactly. During the interaction,
there is oscillation created. In general, the larger the velocity is, the stronger the oscillation will be. (iii) At the collision, the
peak value of the amplitude is equal to the sum of the peak values of the two solitons initially.
5. Extension to NLSE with general nonlinearity and coupled NLSEs

The ideas for designing efficient and accurate numerical methods for the NLSE (1.1) with dark/bright solitons in previous
sections can be easily extended to NLSE with general nonlinearity and/or external potential and coupled nonlinear
Schrödinger equations (NLSEs) arising from pulse propagation in multi-mode fibers [29,30,14], multi-component Bose–
Einstein condensates [9], etc.
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5.1. Numerical methods for NLSE with general nonlinearity and/or external potential

Consider the following NLSE with general nonlinearity and/or external potential
i@twðx; tÞ ¼ �
1
2
@xxwðx; tÞ þ VðxÞwðx; tÞ þ f ðjwðx; tÞj2Þwðx; tÞ; x 2 R; t > 0; ð5:1Þ
where VðxÞ is a given real-valued external potential and f ðqÞ is a given real-valued general nonlinearity satisfying f ð0Þ ¼ 0.
Typical examples include f ðqÞ ¼ bq for cubic nonlinearity, f ðqÞ ¼ bqþ cq2 for cubic-quintic nonlinearity [16], and
f ðqÞ ¼ bq

1þcq [32] with b and c given real constants.

If VðxÞ ! þ1 when jxj ! 1 in (5.1), e.g. harmonic oscillator potential, due to mass and energy conservation, in general,
the initial data w0 in (1.12) and the solution w of (5.1) with (1.12) need satisfy
wðx; tÞ ! 0; jxj ! 1; t P 0:
Then the NLSE (5.1) with (1.12) can be truncated and approximated on X ¼ ½L1; L2�with periodic or homogeneous Dirichlet or
Neumann boundary conditions. The truncated problem can be numerically solved via TSFP or TSSP or TSCP methods similar
to those in Section 4 and the details are omitted here for brevity. For example, for the TSSP method, we need only replace the
first and third steps in (4.8) by
wð1Þj ¼ e�i½VðxjÞþf ðjwn
j j

2Þ�s=2wn
j ; wnþ1

j ¼ e�i½VðxjÞþf ðjwð2Þ
j
j2Þ�s=2wð2Þj :
Now we assume VðxÞ ! V0 when jxj ! 1 in (5.1) with V0 a given constant. If the initial data in (1.12) satisfies (4.1), such as
dynamics and/or interaction of bright solitons, the NLSE (5.1) with (1.12) can be truncated and approximated on X ¼ ½L1; L2�
with periodic or homogeneous Dirichlet or Neumann boundary conditions. The truncated problem can be numerically solved
via TSFP or TSSP or TSCP methods similar to those in Section 4 and the details are omitted here for brevity. Similarly, if the
initial data in (1.12) satisfies (3.1), such as dynamics and/or interaction of type I dark solitons, the NLSE (5.1) with (1.12) can
be truncated and approximated on X ¼ ½L1; L2� with homogeneous Neumann boundary conditions. Then the truncated prob-
lem can be numerically solved via TSCP or TSFD methods similar as those in Section 3 and the details are omitted here for
brevity. Finally, if the initial data in (1.12) satisfies (2.1), such as dynamics and/or interaction of type II dark solitons, then we
need to introduce the transformation (2.19) to ‘rest’ the highly oscillatory phase background at far field. Similar to those in
Section 2.2, plugging the transformation (2.19) into (5.1), we obtain
i@t/ðx; tÞ ¼ �
1
2
@xx/� ik@x/þ

1
2

k2/þ VðxÞ/þ f ðj/j2Þ/; x 2 R; t > 0:
This problem can be truncated on an interval X ¼ ½L1; L2� with homogeneous Neumann boundary condition. Then the trun-
cated problem can be numerically solved by the TSFD method similar to (2.34) and the details are omitted for brevity.

5.2. Numerical methods for coupled NLSEs

To simplify the presentation, here we only show the case of coupled NLSEs with two equations
i@tw1ðx; tÞ ¼ �
1
2
@xxw1 þ V1ðxÞw1 þ f1ðjw1j

2
; jw2j

2Þw1; ð5:2Þ

i@tw2ðx; tÞ ¼ �
1
2
@xxw2 þ V2ðxÞw2 þ f2ðjw1j

2
; jw2j

2Þw2; x 2 R; t > 0; ð5:3Þ
where V1ðxÞ and V2ðxÞ are given real-valued external potentials, f1ðq1;q2Þ and f2ðq1;q2Þ are two given real-valued functions
satisfying f1ð0;0Þ ¼ 0 and f2ð0;0Þ ¼ 0. The corresponding initial data are given as
w1ðx;0Þ ¼ wð0Þ1 ðxÞ; w2ðx;0Þ ¼ wð0Þ2 ðxÞ; x 2 R: ð5:4Þ
A typical example for the nonlinearities and external potentials are given as [29,30,9]
V1ðxÞ ¼ V2ðxÞ � 0; f 1ðq1;q2Þ ¼ b11q1 þ b12q2; f 2ðq1;q2Þ ¼ b21q1 þ b22q2; 0 6 q1;q2 <1; ð5:5Þ
where b11; b12; b21 and b22 are given real constants.
We first assume V1ðxÞ ! V0

1 and V2ðxÞ ! V0
2 when jxj ! 1 in (5.2) with V0

1 and V0
2 two given constants. If the initial data in

(5.4) satisfies
wð0Þ1 ðxÞ ! 0; wð0Þ2 ðxÞ ! 0; x! �1;
such as interactions between bright–bright (B–B) solitons, the original problem can be truncated and approximated on
X ¼ ½L1; L2� with periodic or homogeneous Dirichlet or Neumann boundary conditions. Then the truncated problem can be
numerically solved via TSFP or TSSP or TSCP methods similar to those in Section 4 and the details are omitted here for
brevity.
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If the initial data in (5.4) satisfies
wð0Þ1 ðxÞ ! A0
�; wð0Þ2 ðxÞ ! B0

�; x! �1;
with A0
� and B0

� given constants, such as interactions between two type I dark solitons (D1-D1, e.g. A0
þ – A0

� and B0
þ – B0

�) or
type I dark–bright solitons (D1-B, e.g. A0

þ ¼ A0
� ¼ 0 or B0

þ ¼ B0
� ¼ 0), the original problem can be truncated and approximated

on X ¼ ½L1; L2�with homogeneous Neumann boundary conditions. Then the truncated problem can be numerically solved via
TSCP or TSFD methods similar as those in Section 3 and the details are omitted here for brevity.

Finally, if the initial data in (5.4) satisfies
wð0Þ1 ðxÞ ! A0
�eik1x; wð0Þ2 ðxÞ ! B0

�eik2x; x! �1;
with k1; k2;A
0
� and B0

� given constants, such as interactions between two type II dark solitons (D2–D2, e.g. k1 – 0; k2 – 0,
A0
þ – A0

� and B0
þ – B0

�) or type II dark-type I dark solitons (D2–D1, e.g. A0
þ – A0

�;B
0
þ – B0

� and k1 – 0; k2 ¼ 0 or
k1 ¼ 0; k2 – 0) or type II dark–bright solitons (D2-B, e.g. A0

þ – A0
�; k1 – 0 and B0

þ ¼ B0
� ¼ 0 or B0

þ – B0
�; k2 – 0 and

A0
þ ¼ A0

� ¼ 0), then we need to introduce the following transformations to ‘rest’ the highly oscillatory phase background
at far field
/1ðx; tÞ ¼ w1ðx; tÞe�ik1x () w1ðx; tÞ ¼ /1ðx; tÞeik1x; x 2 R; t P 0; ð5:6Þ
if A0
þ – A0

� and k1 – 0, and/or
/2ðx; tÞ ¼ w2ðx; tÞe�ik2x () w2ðx; tÞ ¼ /2ðx; tÞeik2x; x 2 R; t P 0; ð5:7Þ
if B0
þ – B0

� and k2 – 0. Similar to those in section 2.2, plugging the transformations (5.6) and/or (5.7) into the coupled NLSEs
(5.2)–(5.4), we obtain a truncated and approximated problem for /1 and /2 on an interval X ¼ ½L1; L2� with homogeneous
Neumann boundary condition. Finally, we can numerically solve the truncated problem by the TSFD method similar to
(2.34) and the details are omitted for brevity.

Of course, if either V1ðxÞ ! 1 or V2ðxÞ ! 1 when jxj ! 1 in (5.2)–(5.3), we can extend the ideas and methods in Sec-
tion 5.1 straightforward and the details are omitted for brevity.

5.3. Numerical results

Here we report some preliminary results on interactions of dark/bright solitons in coupled NLSEs by our numerical meth-
ods. In order to do so, the initial data in (5.4) and parameters in (5.2)–(5.5) for different cases are taken as.

� I. Interaction between two type II dark solitons (D2–D2) with b11 ¼ b12 ¼ b21 ¼ b22 ¼ 1 and
wð0Þ1 ðxÞ ¼ a1 tanhða1ðx� x1ÞÞ þ iðv1 � k1Þ½ �eik1x;

wð0Þ2 ðxÞ ¼ ½a2 tanhða2ðx� x2ÞÞ þ iðv2 � k2Þ�eik2x; x 2 R;
� II. Interaction between type II dark and type I dark solitons (D2–D1) with b11 ¼ b12 ¼ b21 ¼ b22 ¼ 1 and
wð0Þ1 ðxÞ ¼ ½a1 tanhða1ðx� x1ÞÞ þ iðv1 � k1Þ�eik1x; wð0Þ2 ðxÞ ¼ a2 tanhða2ðx� x2ÞÞ þ iv2;
� III. Interaction between type II dark and bright solitons (D2–B) with b11 ¼ b12 ¼ b21 ¼ 1; b22 ¼ �1 and
wð0Þ1 ðxÞ ¼ ½a1 tanhða1ðx� x1ÞÞ þ iðv1 � k1Þ�eik1x; wð0Þ2 ðxÞ ¼ a2sechða2ðx� x2ÞÞeiv2x;
� IV. Interaction between type I dark and bright solitons (D1–B) with b11 ¼ b12 ¼ b21 ¼ 1; b22 ¼ �1 and
wð0Þ1 ðxÞ ¼ a1 tanhða1ðx� x1ÞÞ þ iv1; wð0Þ2 ðxÞ ¼ a2sechða2ðx� x2ÞÞeiv2x;
� V. Interaction between two bright solitons (B–B) with b11 ¼ b12 ¼ b21 ¼ b22 ¼ �1 and
wð0Þ1 ðxÞ ¼ a1sechða1ðx� x1ÞÞeiv1x; wð0Þ2 ðxÞ ¼ a2sechða2ðx� x2ÞÞeiv2x; x 2 R:
Figs. 5.1–5.5 display time evolution of jw1j and jw2j for the above 5 cases, respectively.
From Figs. 5.1–5.5 and additional results not shown here for brevity, we can draw the following observations for the inter-

actions of dark/bright solitons in coupled NLSEs: (i) The two solitons in all cases are transmitted through each other without
any oscillation in the collision region. (ii) In the D2–D2 interaction, the one of large amplitude moves without radiation while
the other one with some small radiation. (ii) In the D2–D1 interaction, both the two dark solitons emit new small waves
during propagation. Moreover, the type I dark soliton seems to be dragged deeper and deeper into the background (or
namely become darker and darker) while the minima of the type II dark soliton stays unchange. (iii) In the D2–B interaction,
the type II dark soliton does while the bright soliton does not emit new small waves during propagation. (iv) In the D1–B
interaction, the bright soliton will become thinner and move slower during propagation, meanwhile there will be a small
wave created in the type I dark soliton, which moves in the same direction as the bright soliton. It looks like that the type



−8 0 8
0

1

2

x

|ψ
1(
x,
t)|

t=0
t=1
t=2

−15 0 15
0

0.5

1

x

|ψ
2(
x,
t)|

t=0
t=1
t=2

Fig. 5.1. Time evolution of jw1j and jw2j for the interaction between two type II dark solitons (D2-D2), i.e. case I, with
a1 ¼ 2; k1 ¼ 5; v1 ¼ 5; x1 ¼ �5; a2 ¼ 1; k2 ¼ �5, v2 ¼ �5 and x2 ¼ 5.

−10 0 10
0

0.5

1

x

|ψ
1(
x,
t)|

t=0
t=0.7
t=1.4

−10 0 10
4.7

5.3

5.9

x

|ψ
2(
x,
t)|

t=0
t=0.7
t=1.4

Fig. 5.2. Time evolution of jw1j and jw2j for the interaction between type II dark and type I dark solitons (D2-D1), i.e. case II, with
a1 ¼ 1; k1 ¼ 5; v1 ¼ �5; x1 ¼ 5; a2 ¼ 3; v2 ¼ 5 and x2 ¼ �5.

−7 4 15
0

1

2

x

|ψ
1(
x,
t)|

t=0
t=1
t=2

−8 0 8
0

1

2

x

|ψ
2(
x,
t)|

t=0
t=1
t=2
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I dark soliton ‘split’ a small piece of the bright soliton. (v) In the B–B interaction, the two bright solitons keep their shapes and
velocity, and there is no radiation emitted during propagation.

In a subsequent paper [39], extensive numerical studies will be carried out for interactions of dark/bright solitions in NLSE
with general nonlinearity and/or external potential and vector solitons in coupled NLSEs.
6. Conclusion

New efficient and accurate numerical methods were presented for simulating the nonlinear Schrödinger equation (NLSE)
when the initial data has non-rest or highly oscillatory phase background at far field, such as type II dark soliton solutions,
based on either designing accurate and simple artificial boundary conditions or introducing a proper transformation to rest
the highly oscillatory phase background. Comparisons between these numerical methods were carried out when the NLSE
admits type II dark solition solutions. Moreover, various existing numerical methods were reviewed and compared for com-
puting the NLSE when the initial data has nonzero rest background at far field such as type I dark solitons or decays to zero at
far field such as bight solitions. Based on our extensive numerical comparison results, in order to solve the NLSE numerically,
we suggest that: (a) If the initial data has non-rest or highly oscillatory phase background at far field, e.g. type II dark solitons
and their interactions, then the time-splitting finite difference through a transformation (TSFD-T) method (2.34) with (2.35)
and (2.27) is the most efficient and accurate numerical method; (b) if the initial data has non-zero rest background at far
field, e.g. type I dark solitons and their interactions, then the time-splitting cosine pseudospectral (TSCP) method (3.9) is
the most efficient and accurate numerical method; and (c) if the initial data decays to zero at far field, e.g. bright solitons
and their interactions, then either the time-splitting cosine pseudospectral (TSCP) method (3.9), or time-splitting sine
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pseudospectral (TSSP) method (4.8), or time-splitting Fourier pseudospectral (TSFP) method (4.9) is the most efficient and
accurate numerical method. In addition, these numerical methods were extended to solve the NLSE with general nonlinear-
ity and/or external potential and the coupled nonlinear Schrödinger equations (NLSEs) with vector solitons and their inter-
actions. Finally, we applied these efficient and accurate numerical methods for studying numerically stability and
interactions of type II dark solitons, type I dark solitons and bright solitons of NLSE and interactions of vector solitons of cou-
pled NLSEs. Based on the numerical results, we can conclude that: (i) All the bright, type I dark and type II dark solitons are
dynamically stable in NLSE under the small perturbation at the initial data. (ii) In general, the interactions for all the three
solitons are elastic and they keep their velocity and shape before and after collision. (iii) For the interaction of two type I dark
solitons or two type II dark soltions, when the velocities are less than a critical value, they will be repulsed by each other;
otherwise they will be transmitted through each other. (iv) Soltons wings will be created at collision time and disappear after
collision for bright-bright solitons interaction, and respectively, there is no soliton wings created throughout the whole pro-
cess of interaction for dark–dark solitons interaction. We remark that the numerical methods and the ideas for designing
them can be extended to three-wave interactions in nonlinear optics [14] and spin-1 Bose–Einstein condensation [12].
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Appendix A. Proof of Lemma 2.1

Proof. Differentiating (2.9) with respect to t, noticing (2.6) and (2.7), and integration by parts, we have
N01ðtÞ ¼
Z L2

L1

ðwt
�wþ w�wtÞdxþ k jwðL2; tÞj2 � jwðL1; tÞj2

h i
¼ i
Z L2

L1

½ð�i�wtÞw� ðiwtÞ�w�dxþ k jwðL2; tÞj2 � jwðL1; tÞj2
h i

¼ �Im �wðL2; tÞ@xwðL2; tÞ � �wðL1; tÞ@xwðL1; tÞ
� �

þ k jwðL2; tÞj2 � jwðL1; tÞj2
h i

¼ �k jwðL2; tÞj2 � jwðL1; tÞj2
h i

þ k jwðL2; tÞj2 � jwðL1; tÞj2
h i

¼ 0; t P 0; ðA:1Þ
which immediately implies the conservation of the modified mass in (2.11). Similarly, differentiating (2.10) with respect to t,
we get
E01ðtÞ ¼
1
2

Z L2

L1

@t ½jwxj
2 þ bjwj4�dxþ kIm wðL2; tÞ@t

�wðL2; tÞ � wðL1; tÞ@t
�wðL1; tÞ

� �
¼
Z L2

L1

�1
2

�wxx þ bjwj2 �w


 �
wt þ �1

2
wxx þ bjwj2w


 �
�wt

� �
dxþ Re wtðL2; tÞ�wxðL2; tÞ � wtðL1; tÞ�wxðL1; tÞ

� �
þ kIm wðL2; tÞ@t

�wðL2; tÞ � wðL1; tÞ@t
�wðL1; tÞ

� �
¼ 0; t P 0; ðA:2Þ
which implies the conservation of the modified energy in (2.11). h
Appendix B. Proof of Lemma 2.2

Proof. Multiplying (2.12) by �w
nþ1

2
j ¼ 1

2 ð�w
nþ1
j þ �wn

j Þ, and then subtracting the resulted equation from its conjugate, we get
2idþt jw
n
j j

2 ¼ 1
8
ðwnþ1

j þ wn
j Þd

2
x ð�wnþ1

j þ �wn
j Þ � ð�wnþ1

j þ �wn
j Þd

2
x ðw

nþ1
j þ wn

j Þ
h i

; 0 6 j 6 N: ðB:1Þ
Taking summation of dþt ðjw
n
j j

2 þ jwnþ1
j j2Þ for 0 6 j 6 N � 1, summation by parts, noticing (B.1) and (2.13), we have
dþt
XN�1

j¼0

jwn
j j

2 þ jwn
jþ1j

2
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h
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2
N j
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2

0 j
2
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2
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2
0 j

2
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This, together with (2.16), implies
Nnþ1
1 ¼ h

2
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jwnþ1
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jþ1 j
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Thus the mass conservation in (2.18) of CNFD method (2.12) can be obtained by induction.
Similarly, multiplying (2.12) by dþt

�wn
j , and then adding the resulted equation with its conjugate, we get
b
2

dþt jw
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j j
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2
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Taking summation of dþt ðjw
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This, together with (2.17), implies
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Again, the energy conservation in (2.18) of CNFD method (2.12) can be obtained by induction. h
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